Learning language through pictures

Grzegorz Chrupała, Ákos Kádár and Afra Alishahi

Tilburg University

Word and phrase meanings

Perceptual clues

Distributional clues

the **cat** sat on the mat

the dog chased the **cat**

funniest **cat** video ever lol

Real scenes

Harder

- objects need to be identified
- Invariances detected
- But also easier
 - better opportunities for generalization

Cross-situational learning

• Synthetic data (Fazly et al. 2010)

- Utterance: a bird walks on a beam
- Scene: {bird, big, legs, walk, wooden, beam}

"Coded" scene representations (Frank et al. 2009)

Cross-situational learning

• Synthetic data (Fazly et al. 2010)

- Utterance: *a bird walks on a beam*
- Scene: {bird, big, legs, walk, wooden, beam}

"Coded" scene representations (Frank et al. 2009)

Natural scenes not set of symbols

Captioned images

- a woman is playing a frisbee with a dog.
- a woman is playing frisbee with her large dog.
- a girl holding a frisbee with a dog coming at her.
- a woman kneeling down holding a frisbee in front of a white dog.
- a young lady is playing frisbee with her dog.

Recent works on generating image descriptions use actual image features.

IMAGINET Multi-task language/image model

 Integrate linguistic and visual context

 Representations of phrases and complete sentences

Some details

- Shared word embeddings 1024 units
- Pathways Gated Recurrent Unit nets
 - 1024 clipped rectifier units
- Image representations: 4096 dimensions
- Multi-task objective

Multi-task objective

$$L(\theta) = \alpha L^T(\theta) + (1 - \alpha) L^V(\theta)$$

- L^T cross-entropy loss
- Lv mean squared error
- Three versions
 - *a* = 0 purely visual model
 - *a* = 1 purely textual model
 - 0 < a < 1 multi-task model</p>

Bag-of-words linear regression as a baseline

Baseline

- Input: word-count vector
- Output: image vector
- L2-penalized sum-of-squared errors regression

Correlations with human judgments

Image retrieval task

- Embed caption in visual space
- Rank images according to cosine similarity to caption

Image retrieval and sentence structure

Original versus
scrambled
captions

a brown teddy bear lying on top of a dry grass covered ground

a a of covered laying bear on brown grass top teddy ground . dry

a variety of kitchen utensils hanging from a UNK board .

kitchen of from hanging UNK variety a board utensils a .

Paraphrase retrieval

- Record the final state along the visual pathway for a caption
- For each caption, rank others according to cosine similarity
- Are top-ranked captions about the same image?

Paraphrase retrieval

a cute baby playing with a cell phone

- small baby smiling at camera and talking on phone .
- a smiling baby holding a cell phone up to ear.
- a little baby with blue eyes talking on a phone.

phone playing cute cell a with baby a

- someone is using their phone to send a text or play a game.
- a camera is placed next to a cellular phone.
- a person that 's holding a mobile phone device

Imaginet:

 Learns visually-grounded word and sentence representations from multimodal data

 Encodes and uses aspects of linguistic structure

Current & future work

- Understand internal states
 - Poster at EMNLP VL2015
- Character level modeling

Thanks!

Compared to compositional distributional semantics

word embeddings	distributional word vectors
hidden states	sentence vectors
input-to-hidden weights	projection to sentence space
hidden-to-hidden weights	composition operator

All these are learned based on supervision signal from the two tasks

Compared to captioning

- Captioning (e.g. Vinyals et al. 2014)
 - Start with image vector
 - Output caption word-by-word
 - conditioning on image and seen words
- MAGINET
 - Read caption word-by-word
 - Incrementally build sentence representation
 - while also predicting the coming word
 - Finally, map to image vector

Long term

- Character-level input
 - proof of concept working
- Direct audio input
- Need better story on
 - what should be learned from data
 - what should be hard-coded, or evolved

Gated recurrent units

$$h_t^j = (1 - z_t^j)h_{t-1}^j + z_t^j \tilde{h}_t^j$$

$$z_t^j = \sigma_s (\mathbf{W}_z \mathbf{x}_t + \mathbf{U}_z \mathbf{h}_{t-1})^j$$

$$\tilde{h}_t^j = \sigma(\mathbf{W}\mathbf{x}_t + \mathbf{U}(\mathbf{r}_t \odot \mathbf{h}_{t-1}))^j$$

$$r_t^j = \sigma_s (\mathbf{W}_r \mathbf{x}_r + \mathbf{U}_r \mathbf{h}_{t-1})^j$$

MAGINET

