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Understanding neural
representations of
language

= What representations emerge in neural nets?
= How much do they much linguistic analyses?
= Which parts of the architecture encode what?



PCA3

Jeffrey L Elman. 1991. Distributed representations,
simple recurrent networks, and grammatical struc-

ture. Machine learning 7(2-3):195-225.



Some modern work

Learning objectives

Language modeling
= Linzen et al. 2016

Sentiment classification
= Lietal. 20164, 2016b

Autoencoding
= Adi et al. 2016

Translation
= Belinkov et al. 2017



Visually grounded
language learning

= Approximate human language acquisition
= Text / speech + visual perceptual input



Studies

Setting Representations
Image + Text Syntax
Image + Speech Form vs Meaning

Image + Speech Phonology



Visual Features via CNN




IMAGINET
Multi-task language/image model

 Integrate distributional (textual)
and perceptual (visual) clues

* Representations of phrases and
complete sentences



Data

Microsoft COCO

Common Objects in Context

= 300K images, five crowd-sourced
captions each



Convolutional NN
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Evolution of network state

two giraffes in a grassy area
some zebras running around frishee
a woman playing badmington
a girl plays frishee
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score

Quantifying importance
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Grammatical functions
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LM and Textual pays
attention to all kinds
of words

Visual pathway mostly
focuses on content
words like subjects,
objects and main verbs
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Omission score models

score ~ word + dep + pos + word:dep + word:pos

Visual Predictors R?
pathway
word 0.490
word—+pos 0.506
word-+dep 0.015

word+pos+dep  0.523



Information structure
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Speech + Image




Data

* Flickr8K Audio (Harwath & Glass 2015)

= 8K images, five audio captions each

= MS COCO Synthetic Spoken Captions

Microsoft COCO

Common Objects in Context

= 300K images, five synthetically spoken captions
each



Project speech and
Image to joint space

a bird walks on a beam
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Speech model

* Input: MFCC T

» Subsampling CNN *ES;“ zft > :‘:”
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Model settings

Flickr8K Speech COCO Speech
Attention 128 Attention 512
RHN depth 2, 1024 RHN depth 2, 512
RHN depth 2, 1024 RHN depth 2, 512
RHN depth 2, 1024 RHN depth 2, 512
RHN depth 2, 1024 RHN depth 2, 512
Conv 6x64, Strlde RHN depth 2, 512

Conv 6x64, Strlde 3
Flickr8K Text COCO Text
RHN depth 1, 1024 RHN depth 1, 1024

Embedding 300 Embedding 300



Image retrieval

. Model RQ@10 r
Flickr8K  "Speech RHN, , 0.253 48
Harwath & Glass 2015  0.179 -

Text RHNLl 0.494 11

Model R@10 r

MSCOCO Speech RHN5 2  0.444 13
Text RHNl,l 0.0065 8

Newer CNN architecture: Harwath et al 2016 (NIPS), Harwath and Glass 2017 (ACL)



Levels of representation

= What aspects of sentences are
encoded?

= Which layers encode form, which
encode meaning?



Representational

® ® o
similarity
Utt 1 Utt 2 Sim 1
A slice of pizza A bowlofsalad 7.0
Two dogs run A kitty running 8.0

A yellow and white bird A kitty running 3.0

Correlation between similarity 1 and similarity 2

Sim 2

6.2

9.0

4.5



Representational Similarity

= Correlations between Embedding 1
sets of pairwise s I-
similarities according to : d ) n

. . ayer 4-
= Activations Laver 3. 1.
V5 Layer 2 -I-
= Edit ops on text Layer 1 J-
* Human judgments MFCC- -
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Homonym disambiguation
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== great/grate =gight/site =~ =sales/sails == plains/planes == hole/whole
== mantle/mantel == pic/pick == poarder/border = see/sea == SUite/sweet
words = peer/pier ==sun/son =plane/plain  ==main/mane = pairs/pears
== tale/tall == wears/wares = lapse/laps ==rains/reins == cole/coal
== wit/whit == pause/paws = rose/rows =tea/tee == sale/sall
== weight/wait == tied/tide == stares/stairs == stair/stare

log(mincount) =4 ==5mgm==7



Phonological form



Phoneme decoding

= Classify 0.5
representations
of speech
segments :

o
~

= L2-penalized
Logistic
regression

Error rate
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Phoneme discrimination

ABX task (Schatz et al. 2013)

A: /bi/ B: /mi/

2

X: /maly/



Especially
challenging when the
target (B) and
distractor (A) belong
to same phoneme
class.
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Synonym discrimination

= Disentangle phonological fForm and
semantics.

* Discriminate between synonyms in
identical context:
A girl looking at a photo.
A girl looking at a picture.

* How invariant to phonological form is a
representation?
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Pair

@ couch/sofa @ photo/picture

@ tv/television @ assortment/variety
@ vegetable/veggie ® purse/bag

@ bicycle/bike @ picture/image

@ store/shop @ spot/place

@ rock/stone @ small/little

@ sidewalk/pavement ¢ large/big

@ Kid/child @ photograph/photo
@ slice/piece @ slice/cut

@ pier/dock ® make/prepare

@ person/someone © bun/roll

@ carpet/rug @ direction/way

@ photograph/picture



Conclusion

= Visually grounded RNNs implicitly learn
approximations of (some) linguistic
concepts
= Grammatical functions
= Phonemes

* Bottom layers encode form, top layers
meaning

* Even top layers are far from form-invariant



Some open questions

= RNNS' biases are weak and not
motivated by structure of language

= Inject stronger, more specific bias?
= Hard-wire them?
= Learn them from massive data?

= Triangulate using cross-language
setting?
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Code/data

» github.com/gchrupala/visually-grounded-speech
= github.com/gchrupala/encoding-of-phonology
= zenodo.org/record/400926






Dependency and
position

= Omission ~

Word +
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% S
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word +pos  +dep tull
SUM 0.654 0.661 0.670 0.670
LM 0.358 0.586 0.415 0.601
TEXTUAL | 0.364 0.703 0.451 0.715
VISUAL 0.490 0.506 0.515 0.523




Specificity of neurons

a parking meter next to a parked car

a fork next to an apple orange and onion

three eatmg sandwiches at a corner table

clock with two gunman from the old west

two young men in  chairs playlng game with nintendo wii controllers




Number of words

" Input

= Activations for
utterance

=
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Word presence

" Input

= Activations for
utterance

= MFCC for word

= Model
= MLP

Word Prediction Accuracy
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