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Understanding neural 
representations of 

language

 What representations emerge in neural nets?
 How much do they much linguistic analyses?
 Which parts of the architecture encode what?



  



  

Some modern work

Language modeling
 Linzen et al. 2016

Sentiment classification
 Li et al. 2016a, 2016b

Autoencoding
 Adi et al. 2016

Translation
 Belinkov et al. 2017

Learning objectives



  

Visually grounded 
language learning

 Approximate human language acquisition
 Text / speech  + visual perceptual input



  

Studies



  

Visual Features via CNN
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IMAGINET
Multi-task language/image model

 Integrate distributional (textual) 
and perceptual (visual) clues

 Representations of phrases and 
complete sentences



  

Data

 300K images, five crowd-sourced 
captions each



  

Convolutional NN



  

Convolutional NN



  

Evolution of network state

Network states projected to two 
dimensions via PCA



  

Quantifying importance

omit baby

original sentence



  

Grammatical functions

 LM and Textual pays 
attention to all kinds 
of words

 Visual pathway mostly 
focuses on content 
words like subjects, 
objects and main verbs



  

Functions by word form



  

Omission score models

score ~ word + dep + pos + word:dep + word:pos

Visual 
pathway



  

Information structure



  

Speech + Image



  

Data

 Flickr8K Audio (Harwath & Glass 2015)
 8K images, five audio captions each

 MS COCO Synthetic Spoken Captions

 300K images, five synthetically spoken captions 
each



  

Project speech and 
image to joint space

a bird walks on a beam

bears play in water



  

Speech model

 Input: MFCC
 Subsampling CNN
 Recurrent 

Highway Network 
(Zilly et al 2016)

 Attention



  

Model settings



  

Image retrieval

Flickr8K

MSCOCO

Newer CNN architecture: Harwath et al 2016 (NIPS), Harwath and Glass 2017 (ACL)



  

Levels of representation

 What aspects of sentences are 
encoded?

 Which layers encode form, which 
encode meaning?



  

Representational 
similarity

Utt 1 Utt 2 Sim 1 Sim 2

A slice of pizza A bowl of salad 7.0 6.2

Two dogs run A kitty running 8.0 9.0

A yellow and white bird A kitty running 3.0 4.5

Correlation between similarity 1 and similarity 2



  

Representational Similarity

 Correlations between 
sets of pairwise 
similarities according to
 Activations

VS
 Edit ops on text
 Human judgments 

(SICK dataset)



  

Homonym disambiguation



  

Phonological form



  

Phoneme decoding
 Classify 

representations 
of speech 
segments 

 L2-penalized 
Logistic 
regression



  

Phoneme discrimination

ABX task (Schatz et al. 2013)

        A: /bi/                          B: /mi/

                        X: /maI/                            
     



  

ABX

Especially 
challenging when the 
target (B) and 
distractor (A) belong 
to same phoneme 
class.



  

Synonym discrimination

 Disentangle phonological form and 
semantics.

 Discriminate between synonyms in 
identical context:

A girl looking at a photo.

A girl looking at a picture.
 How invariant to phonological form is a 

representation?



  



  

Conclusion

 Visually grounded RNNs implicitly learn 
approximations of (some) linguistic 
concepts
 Grammatical functions
 Phonemes 

 Bottom layers encode form, top layers 
meaning

 Even top layers  are far from form-invariant 



  

Some open questions

 RNNs’ biases are weak and not 
motivated by structure of language

 Inject stronger, more specific bias?
 Hard-wire them?
 Learn them from massive data?

 Triangulate using cross-language 
setting?
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Extras



  

Dependency and 
position

 Omission ~

Word +

Pos +

Dep +

Word:Pos +

Word:Dep

 



  



  

Specificity of neurons



  

Number of words

 Input
 Activations for 

utterance
 Model

 Linear regression



  

Word presence

 Input 
 Activations for 

utterance
 MFCC for word

 Model
 MLP
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