Linguistic interpretability in neural models of grounded language learning

Grzegorz Chrupała

EMNLP Workshop on Building Linguistically Generalizable NLP Systems

In collaboration with

Afra Alishahi

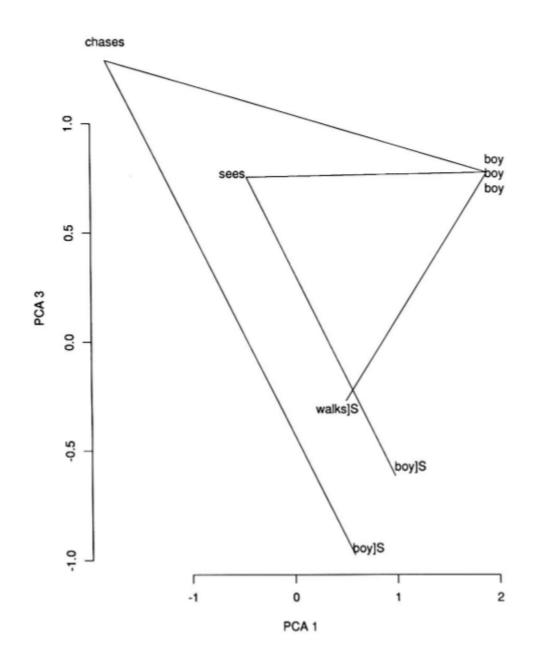
Lieke Gelderloos

Ákos Kádár

Marie Barking

Understanding neural representations of language

- What representations emerge in neural nets?
- How much do they much linguistic analyses?
- Which parts of the architecture encode what?



Jeffrey L Elman. 1991. Distributed representations, simple recurrent networks, and grammatical structure. *Machine learning* 7(2-3):195–225.

Some modern work

Language modeling

Linzen et al. 2016

Learning objectives

Sentiment classification

• Li et al. 2016a, 2016b

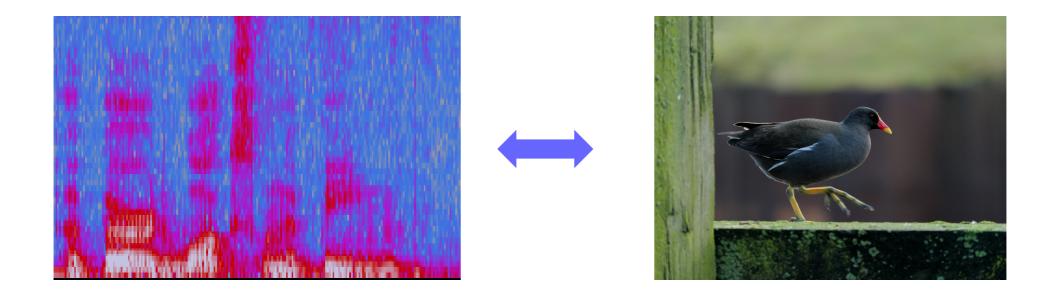
Autoencoding

Adi et al. 2016

Translation

Belinkov et al. 2017

Visually grounded language learning



- Approximate human language acquisition
- Text / speech + visual perceptual input

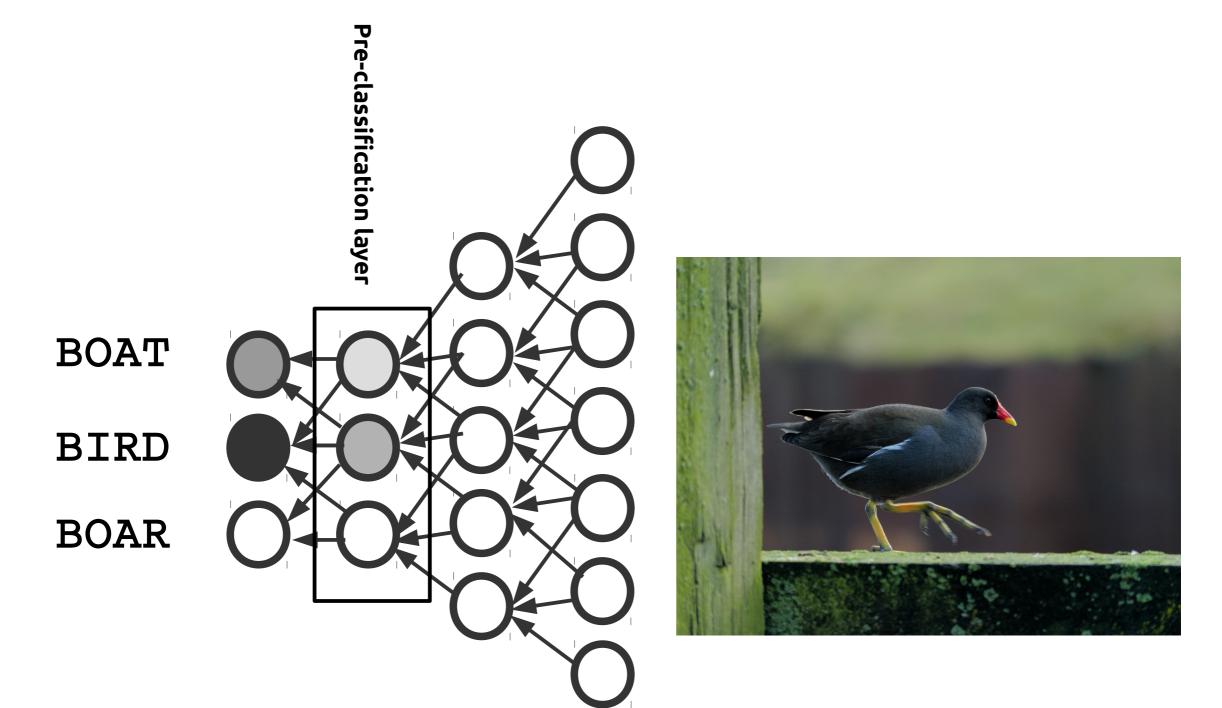
Studies

\mathbf{C}	•
Seu	ting
	O

Representations

Image + Text Image + Phonemes Image + Speech Image + Speech Syntax Form vs Meaning Form vs Meaning Phonology

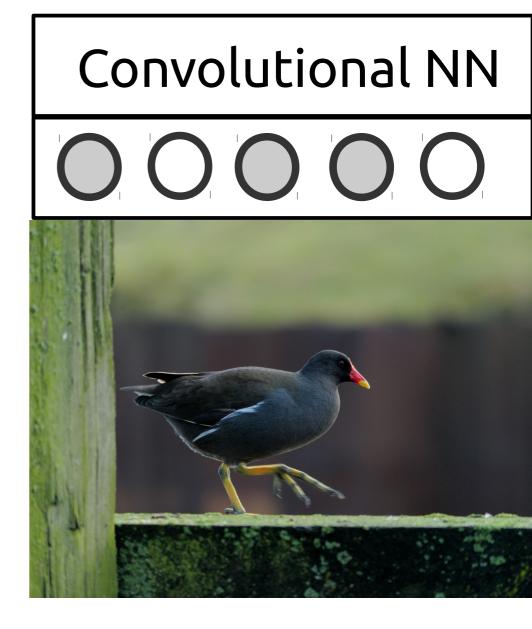
Visual Features via CNN



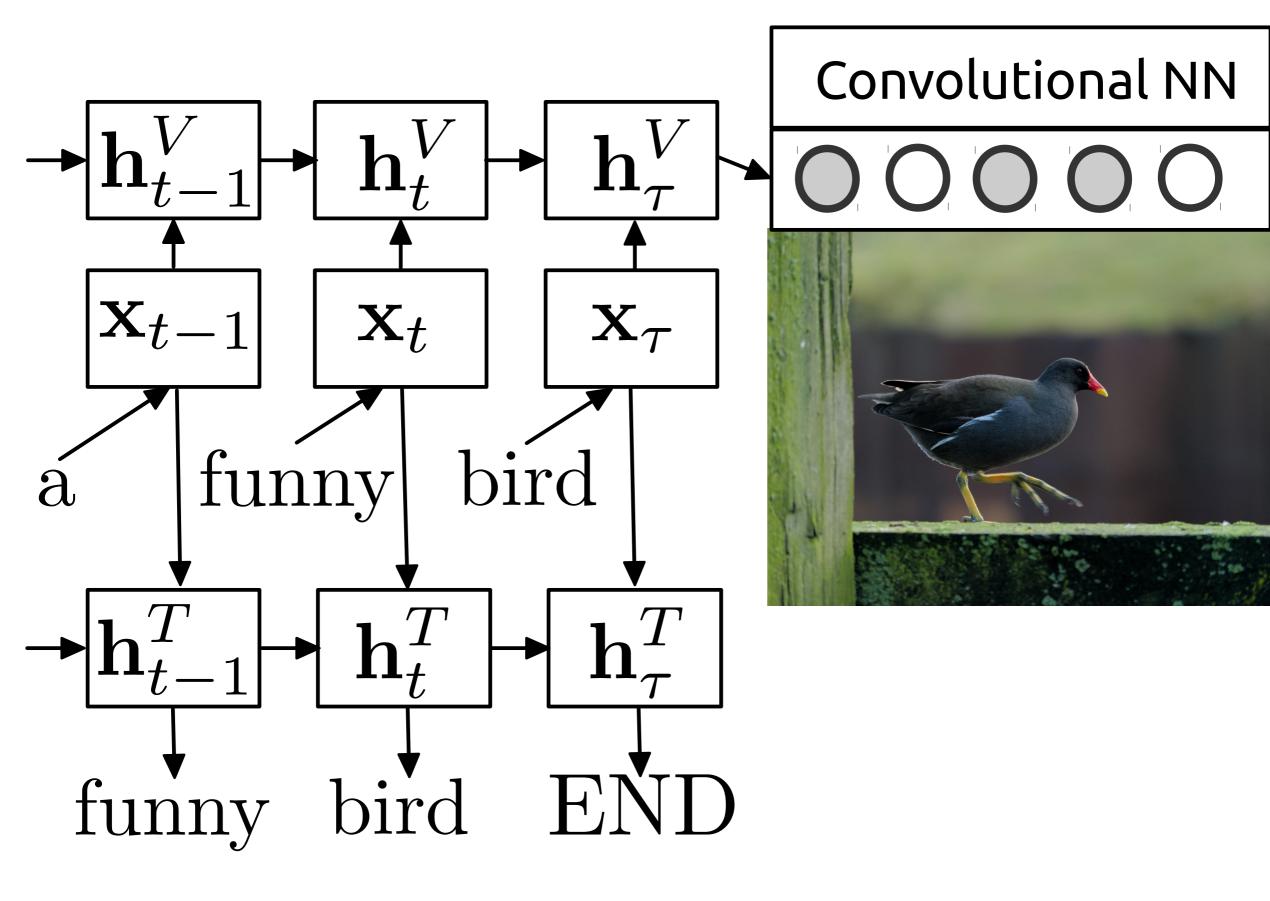
IMAGINET Multi-task language/image model

- Integrate distributional (textual) and perceptual (visual) clues
- Representations of phrases and complete sentences

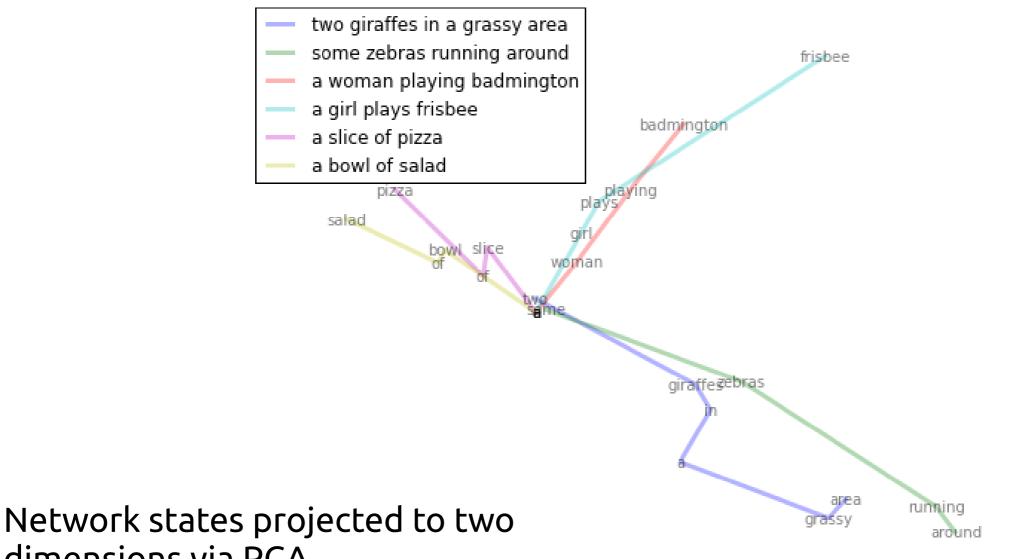
300K images, five crowd-sourced captions each



a funny bird

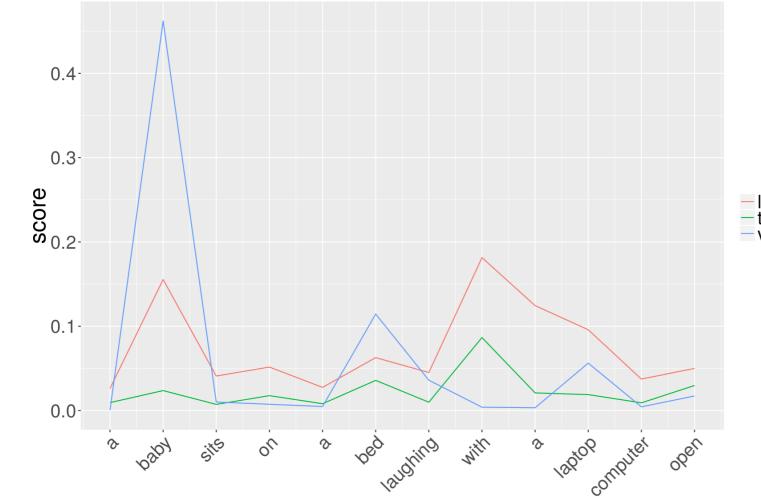


Evolution of network state



dimensions via PCA

Quantifying importance

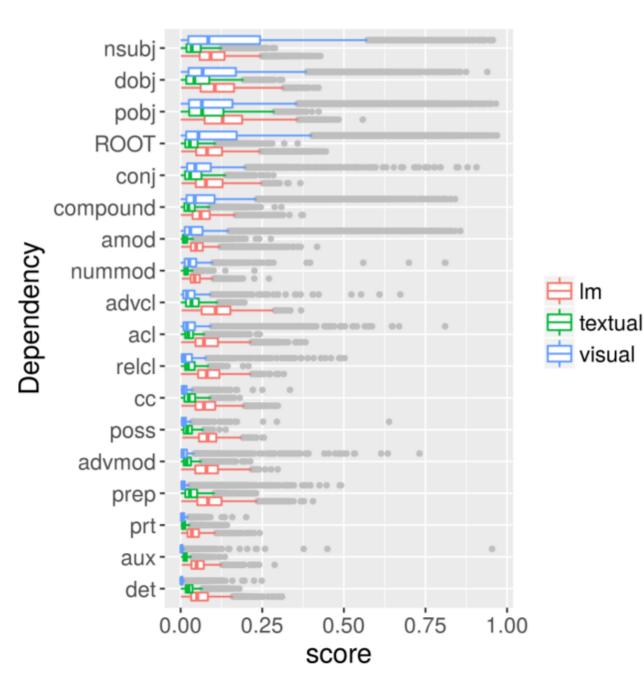


Im
 textual
 visual

original sentence

omit **baby**

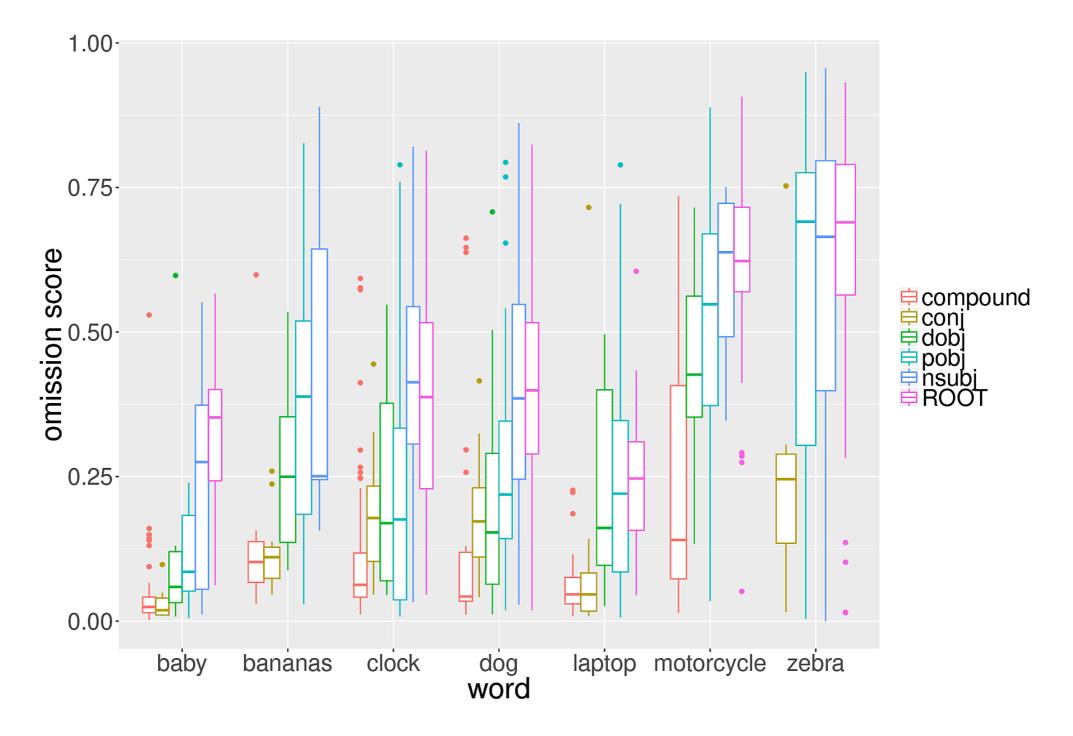
Grammatical functions



LM and Textual pays attention to all kinds of words

Visual pathway mostly focuses on content words like subjects, objects and main verbs

Functions by word form

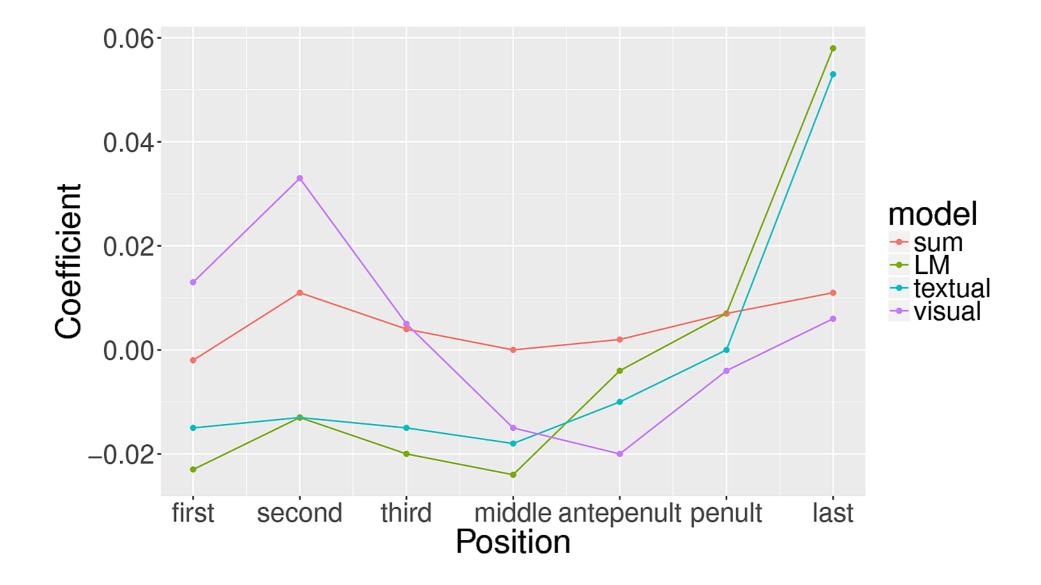


Omission score models

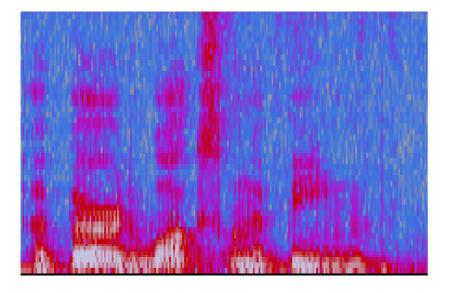
score ~ word + dep + pos + word:dep + word:pos

Visual pathway	Predictors	R^2
	word	0.490
	word+pos	0.506
	word+dep	0.515
	word+pos+dep	0.523

Information structure



Speech + Image

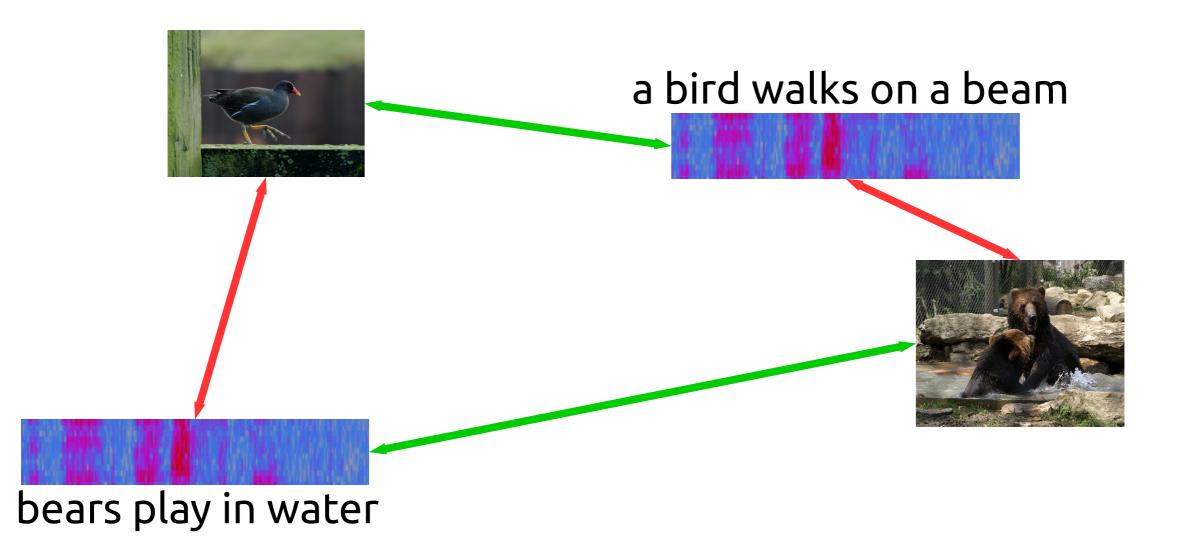


Data

- Flickr8K Audio (Harwath & Glass 2015)
 - 8K images, five audio captions each
- MS COCO Synthetic Spoken Captions

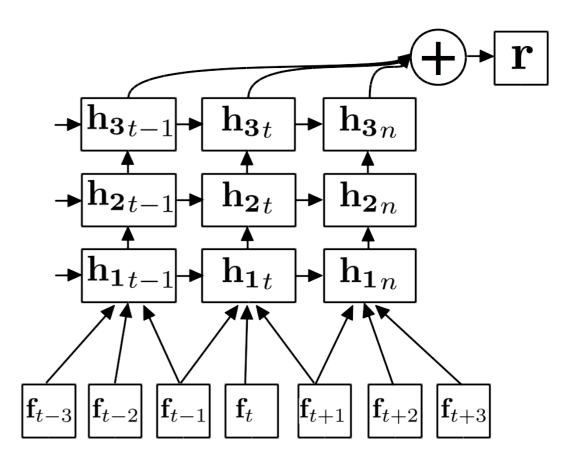
 300K images, five synthetically spoken captions each

Project speech and image to joint space



Speech model

- Input: MFCC
- Subsampling CNN
- Recurrent Highway Network (Zilly et al 2016)
- Attention



Model settings

Flickr8K Speech

Attention 128 RHN depth 2, 1024 RHN depth 2, 1024 RHN depth 2, 1024 RHN depth 2, 1024 Conv 6x64, stride 2

Flickr8K Text RHN depth 1, 1024 Embedding 300

COCO Speech

Attention 512 RHN depth 2, 512 Conv 6x64, stride 3

COCO Text RHN depth 1, 1024 Embedding 300

Image retrieval

	Model	R@10	\widetilde{r}
Flickr8K	Speech RHN _{4,2}	0.253	48
	Harwath & Glass 2015	0.179	-
	Text $RHN_{1,1}$	0.494	11
	Model	R@10	\widetilde{r}
MSCOCO	Speech $RHN_{5,2}$	0.444	13
	Text $RHN_{1,1}$	0.565	8

Newer CNN architecture: Harwath et al 2016 (NIPS), Harwath and Glass 2017 (ACL)

Levels of representation

- What aspects of sentences are encoded?
- Which layers encode form, which encode meaning?

Representational similarity

Utt 1	Utt 2	Sim 1	Sim 2
A slice of pizza	A bowl of salad	7.0	6.2
Two dogs run	A kitty running	8.0	9.0
A yellow and white bird	A kitty running	3.0	4.5

Correlation between similarity 1 and similarity 2

Representational Similarity

- Correlations between sets of pairwise similarities according to
 - Activations

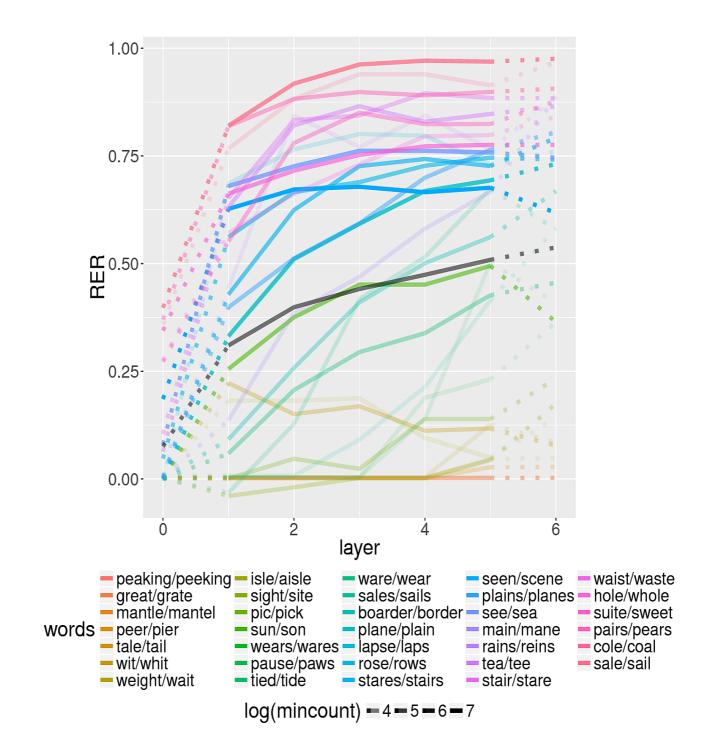
VS

- Edit ops on text
- Human judgments

(SICK dataset)



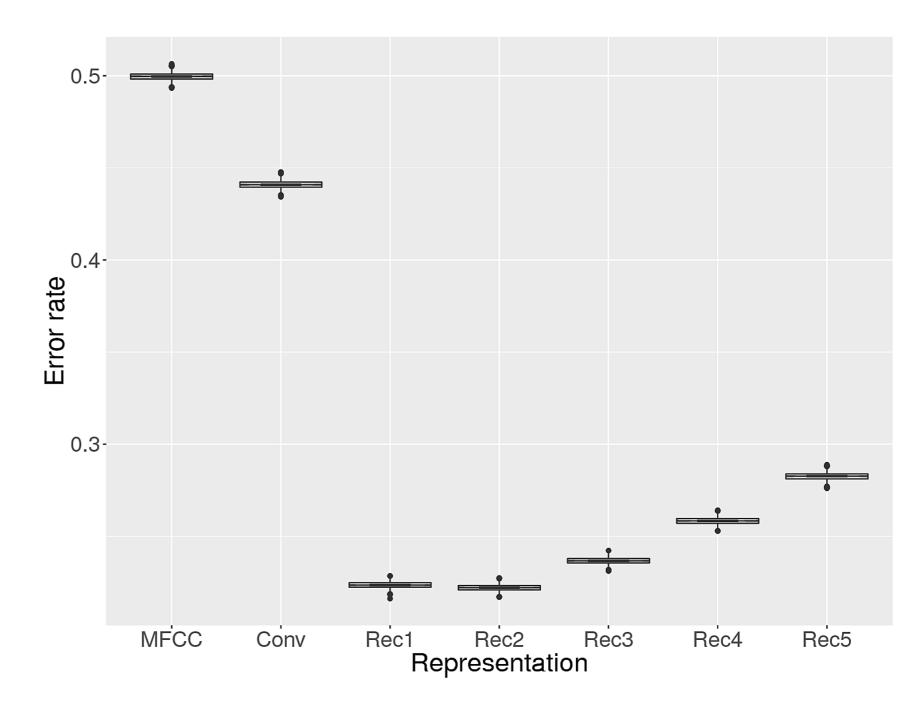
Homonym disambiguation



Phonological form

Phoneme decoding

- Classify representations of speech segments
- L2-penalized
 Logistic
 regression

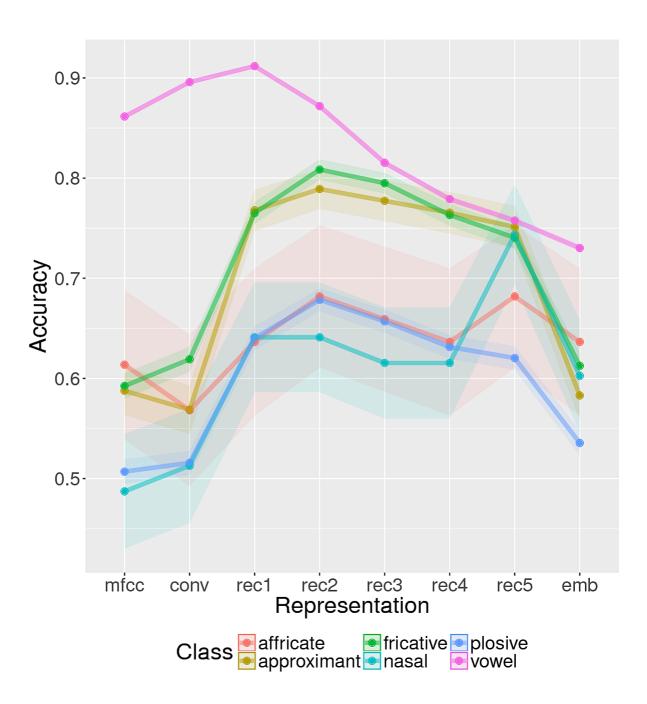


Phoneme discrimination

ABX task (Schatz et al. 2013)

A: /bi/ X: /mai/

Especially challenging when the target (B) and distractor (A) belong to same phoneme class.



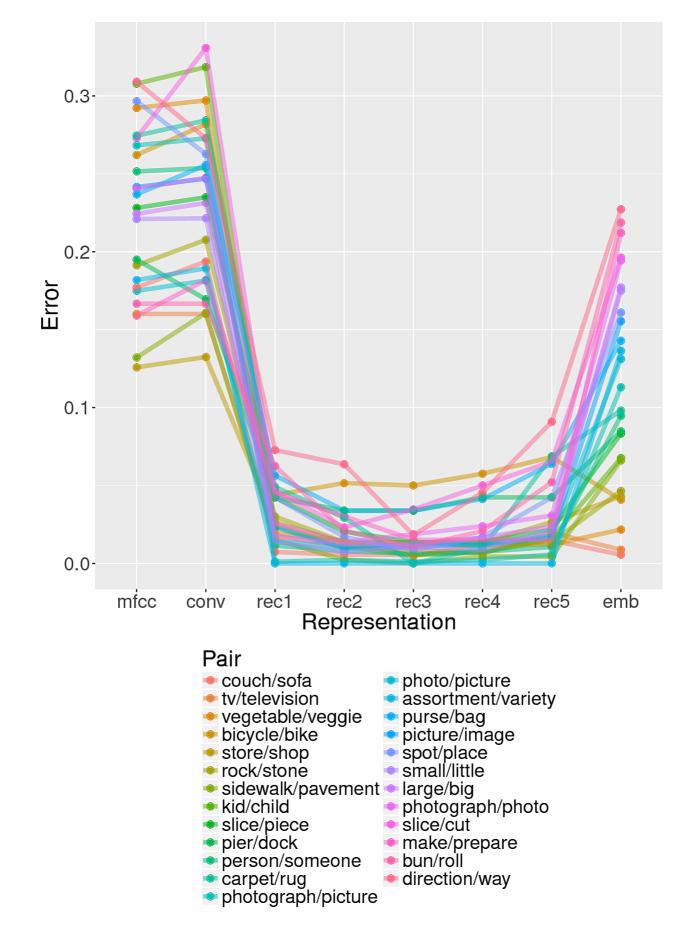
Synonym discrimination

- Disentangle phonological form and semantics.
- Discriminate between synonyms in identical context:

A girl looking at a photo.

A girl looking at a picture.

How invariant to phonological form is a representation?



Conclusion

- Visually grounded RNNs implicitly learn approximations of (some) linguistic concepts
 - Grammatical functions
 - Phonemes
- Bottom layers encode form, top layers meaning
- Even top layers are far from form-invariant

Some open questions

- RNNs' biases are weak and not motivated by structure of language
- Inject stronger, more specific bias?
 - Hard-wire them?
 - Learn them from massive data?
- Triangulate using cross-language setting?

References

- Grzegorz Chrupała, Ákos Kádár, Afra Alishahi. 2015. Learning language through pictures. In ACL.
- Lieke Gelderloos and Grzegorz Chrupała. 2016. From phonemes to images: levels of representation in a recurrent neural model of visually-grounded language learning. In Coling.
- Ákos Kádár, Grzegorz Chrupała and Afra Alishahi. 2017. Representation of linguistic form and function in recurrent neural networks. Computational Linguistics (in press).
- Grzegorz Chrupała, Lieke Gelderloos and Afra Alishahi. 2017. Representations of language in a model of visually grounded speech signal. In ACL.
- Afra Alishahi, Marie Barking and Grzegorz Chrupała. 2017. Encoding of phonology in a recurrent neural model of grounded speech. In CoNLL.

Code/data

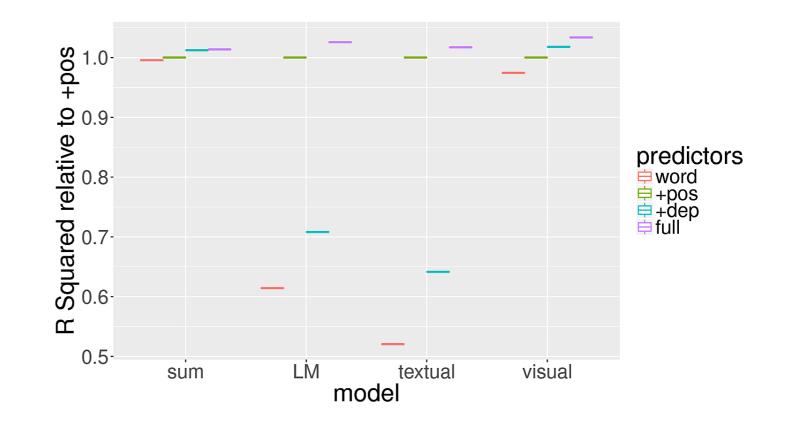
- github.com/gchrupala/visually-grounded-speech
- github.com/gchrupala/encoding-of-phonology
- zenodo.org/record/400926

Dependency and position

Omission ~

Word +

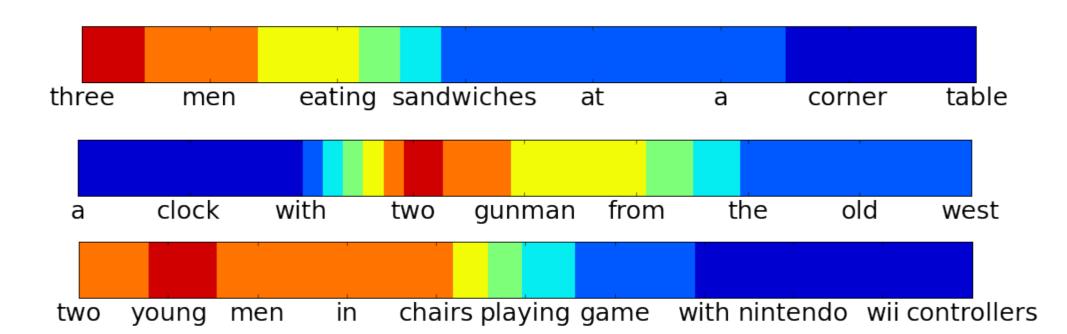
Pos + Dep + Word:Pos + Word:Dep



		▲	+dep	
SUM	0.654	0.661	0.670	0.670
LM	0.358	0.586	0.415	0.601
TEXTUAL	0.364	0.703	0.451	0.715
VISUAL	0.654 0.358 0.364 0.490	0.506	0.515	0.523

Specificity of neurons

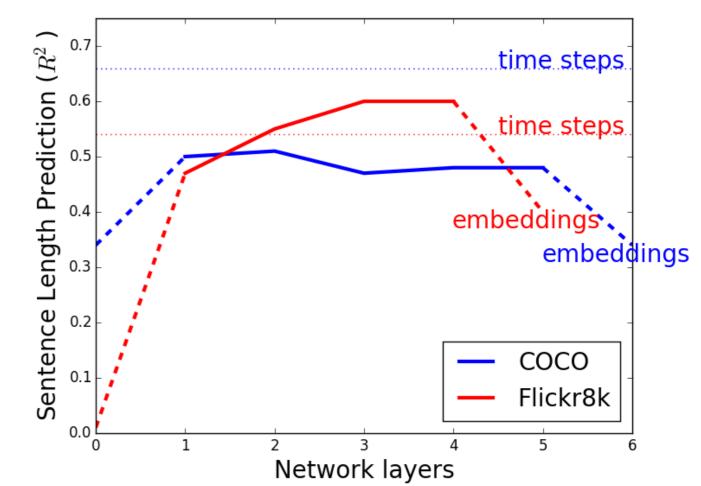




Number of words

Input

- Activations for utterance
- Model
 - Linear regression



Word presence

Input

- Activations for utterance
- MFCC for word
- Model
 - MLP

