
Across Languages and Cultures 4 (1), pp. 109–132 (2003)

1585-1923/$ 20.00 © 2003 Akadémiai Kiadó, Budapest

PERL SCRIPTING IN TRANSLATION PROJECT
MANAGEMENT

GRZEGORZ CHRUPAŁA

Intercultural Studies Group, Universitat Rovira i Virgili,
Placa Imperial Tarraco 1, E-43005 Tarragona, Spain

E-mail: grchrupc7@docd4.ub.edu

Abstract: The field of translation in general and of technical translation in particular
has become increasingly dependent on the use of various electronic tools. Computer as-
sisted translation uses specialized applications that partly automate the production of
multilingual software and documentation. However, for some needs these applications are
not flexible enough. In these situations programming becomes indispensable. Scripting pro-
gramming languages such as Perl provide a perfect platform for rapid solution of specific,
short-term problems in a fully customizable way.

Key words: translation, scripting, programming, CAT, Perl

1. INTRODUCTION

The process of producing a technical translation normally involves a series of
subtasks. Sometimes all these are performed by one and the same person but
most commonly they are assigned to professionals who are specialized in some
subset of the tasks. This text focuses on processes mostly carried out by either
translation managers or Information Technology professionals. Thus we will be
dealing neither with specifically translatological problems nor with the logistics
of technical translation. Rather, we will be talking about those parts of the trans-
lation process most dependent on the digital support of documents and
consequently heavily relying on computers and computational techniques. We
will also mainly focus on the processing of “static” electronic documents and
only tangentially touch upon issues related to localization (i.e., translation and
adaptation of software).

1.1. CAT Tools

Ever since most texts started to be produced on digital rather than physical sup-
port, electronic tools automating translation processes have been gaining
importance. These tools include specialized editors, translation-memory man-
agement applications, terminology management applications, alignment tools

GRZEGORZ CHRUPAŁA

Across Languages and Cultures 4 (1) (2003)

110

and format-filtering components. All or some of these can be built into a single
modular application that provides an integrated Computer Assisted Translation
(CAT) environment. Some well-known applications include Trados Translators
Workbench, STAR Transit or Atril’s Déjà Vu.

CAT applications have proven enormously useful and have consistently
improved productivity in translation and arguably also translation quality. By
means of re-using existing resources, translation memories relieve technical
translators from some of the repetitive nature of their job, permitting them to
concentrate on the more creative parts of translation. Alignment tools make it
possible to create translation memories from parallel texts in a semi-automatic
way. Filters and specialized editors with import/export functions permit the
translator to work in a familiar environment without needing to learn all the dif-
ferent applications that are currently used to produce documentation. Finally,
the terminology management applications integrated into CAT tools streamline
both the terminologist’s and translator’s work by providing a flexible digital
support for specialized dictionaries.

However, by their very nature, these applications have some limitations.
They are designed so that they can be used by an averagely computer literate
translator or project manager. They are almost exclusively Graphic User Inter-
face (GUI) based and as such provide little extensibility. The functions that are
available are those and only those that the GUI designers programmed into the
user interface, and these tend to be the most common, routine tasks required by
the majority of users most of the time.

There are situations when existing CAT tools are inadequate on their own,
for example:

(1) Your processes are untypical and as such are not provided for by com-
mon CAT suites;
(2) You need to perform tasks that are too specific to be covered by a CAT
application.

If you are regularly in situation (1), then you probably need a long-term

CAT solution tailored to your untypical needs. This involves software develop-
ment and falls outside the scope of the present work. However, if you find
yourself in situation (2) you don’t really need a heavy-duty long-term solution:
you just want a quick and easy-to-program fix. And this is where scripting lan-
guages show their power.

1.2. Scripting

A script is a series of commands that automates relatively uncomplicated
tasks involving electronic data. There are different ways to write scripts.

PERL SCRIPTING IN TRANSLATION PROJECT MANAGEMENT

Across Languages and Cultures 4 (1) (2003)

111

• You make a file with a series of commands provided by your operating
system. On Unix these are called shell scripts; on Windows they are
known as batch files.

• You write a program in a programming language of your choice.

Often scripts are written in scripting languages which provide features that
make it easier and quicker to write, to debug and to use such relatively non-
complex programs. Some of these features are:

Dynamic typing: You do not need to predeclare your variables or specify
their type. So if you want to store some integer value in variable myint you do
not need to specify earlier that myint is a variable of type integer. You can
just say myint = 8, use the variable, and maybe later assign a string to it.

Interpreting rather than compiling: There is no need to first compile the
program in order to use it. You just type your script in a text editor, save it and
run it by invoking an interpreter which translates the source code on the fly and
executes the result. This means you are able to develop and test your programs
faster.

High-level programming: You do not need to know or care about low-level
operations such as memory allocation. You can concentrate on your data and
what needs to be done about them. Your programs are compact and easy to un-
derstand.

Another important factor to consider when choosing a language for script-
ing is how easy it is to learn. Since you are going to try to find quick solutions
you do not want to spend too much time just trying to figure out the basics.

2. PERL

Languages often used for scripting include Awk, Tcl, Scheme, Perl, Python and
Ruby. Languages such as C, C++ and Java are good for systems and applica-
tions programming, but are awkward when you need a small, quick solution
because they lack some or all of the features enumerated above. In this text I
will use examples in Perl.

2.1. What is Perl?

Perl is a high-level general purpose programming language developed by Larry
Wall (Wall et al. 2000). It is widely used in quick prototyping, system utilities,
software tools, system management tasks, database access and world wide web
programming. Is has also been employed in corpus and computational linguis-
tics since one of its main strengths is its comprehensive support of text
processing and powerful regular expressions.

GRZEGORZ CHRUPAŁA

Across Languages and Cultures 4 (1) (2003)

112

As already observed, there are many different ways scripts can be written
and used. You could use shell scripts to do most of what we are going to cover.
But using a programming language such as Perl has a few clear advantages:

Perl is available for virtually any operating system. Whether you are on
Mac, Linux, Windows or anything else, you can use most of the same code.
With shell/batch scripts you are restricted to the set of commands provided by
your operating system, and on some of them this can be very limiting. Perl is a
full-blown programming language, so you can basically achieve anything that is
programmable. There is a large repository of modules and scripts publicly
available on CPAN (Comprehensive Perl Archive Network) at
http://www.cpan.org/. If you need to do something, it is probable that someone
has already written a program that does what you need.

Perl is covered either by the GNU General Public License or Artistic Li-
cense, which ensures that it remains free, open-source software. You can
download the source code from CPAN. Binary builds for many platforms are
also available (for example from http://www.activestate.com, for Windows,
Linux and Solaris).

While Perl is very versatile and perfectly suitable for most types of tasks
discussed in this text, some people might prefer to use a different scripting lan-
guage. For example Ruby, developed by Yukihiro Matsumoto, is very similar in
spirit to Perl but has fuller and higher level support for object-oriented pro-
gramming. Another choice is Python, which also provides a nice, simple
interface to object-orientation. Another very flexible language is Scheme, which
is a small, simplified dialect of the functional programming language Lisp.
These three languages have a smaller user-base than Perl and for this reason
there is less reusable code publicly available for them. Whichever one you
choose, most of the techniques illustrated with Perl code in this text should be
transferable to Ruby and Python and probably also to other languages.

2.2. The Perl Basics

This section is not meant to be a Perl tutorial: there are already many very good
tutorials and books available: the classic reference is Programming Perl by
Larry Wall et al. (2000). Another very useful source is the Perl Cookbook
(Schwartz and Christiansen 1998). Below we simply illustrate some chosen fea-
tures of the language.

Note: At the time of writing the latest stable release of Perl was 5.8.0 and
the code in this text was tested on this version. A major rewrite of the language
is underway. This modernized Perl will be called Perl6.

PERL SCRIPTING IN TRANSLATION PROJECT MANAGEMENT

Across Languages and Cultures 4 (1) (2003)

113

2.2.1. Syntax

In Perl, statements normally end with a semicolon and anything following # un-
til the end of line is ignored (this is used for comments). Blocks are enclosed in
curly brackets. There are many predefined variables with names consisting of
punctuation characters.

2.2.2. Variables

Variables are where you can store data; in Perl they have a different prefix de-
pending on the type of value they contain:

• $ (dollar sign) means the value is a scalar, e.g., a single number, string
or a reference to an object;

• @ (at sign) means the variable contains an array – roughly, an ordered
list with an integer index assigned to each element;

• % (percent sign) is used to mark hashes – or unordered sets of key =>
value pairs whose keys are unique scalars.

An example should make their use clear:

$firstName = ‘Nim’;
$surname = ‘Chimpsky’;
@fruit = (‘apples’, ‘bananas’, ‘coconuts’, ‘guavas’);
%gloss = (
 apples => ‘manzanas’, bananas => ‘plátanos’,
 coconuts => ‘cocos’, guavas => ‘guayabas’);
print “$firstName $surname likes”,
 “$fruit[0] and $fruit[1].\n”;
print “A $surname le gustan “,
 “las $gloss{apples} y los $gloss{bananas}.\n”;

The above program will print out the following two lines:

Nim Chimpsky likes apples and bananas.
A Chimpsky le gustan las manzanas y los plátanos.

2.2.3. Functions

Functions in Perl accept arguments or lists of arguments and return values. For
example the split function can take a regular expression as its first argument
and a string as the second one, and will return a list of strings resulting from di-
viding the original string wherever it matches the regular expression provided.

GRZEGORZ CHRUPAŁA

Across Languages and Cultures 4 (1) (2003)

114

join does (more or less) the opposite: it takes a string and a list of strings and
returns a string which results from concatenating the elements in the list, and
putting the first argument string in between them. Some functions are used more
for their side-effect rather than for their return value. The print function re-
turns 1 if successful, but also prints its arguments on the current output (e.g., the
terminal window). And functions can be combined so that what one returns be-
comes the argument(s) of the other. For example, if variable $myMates
contains the string

‘tom@host.net;dick@host.net;harry@host.org’,

then this line:

print(join(“\n”, split(/;/, $myMates)));

will print the following:

tom@host.net
dick@host.net
harry@host.org

The special character \n means a newline. In the above line, first the string is
split at semicolons, the resulting list of strings is then joined with newlines, and
the resulting string is printed to the current output device.

You can define your own functions (then they are also called subroutines)
with sub.

sub FahrenheitToCelsius {
 my $f = $_[0];
 return ((5/9) * ($f-32));
}
print ‘Water boils at’, FahrenheitToCelsius(212),
 ‘degrees Celsius’, “\n”;

You retrieve any arguments given to your function from the special variable @_:
its first element is $_[0], second $_[1], etc. You can also simply say
shift(@_) to remove and retrieve the first element of @_, and even abbrevi-
ate it to just shift (@_ will be understood).

Above we have saved the argument given to the subroutine in a locally
scoped variable $f. What makes it locally scoped (visible only inside the en-
closing block) is the use of my. The function will return the last expression
evaluated or whatever you specify as an argument to return: in this case the
temperature converted to the Celsius scale.

PERL SCRIPTING IN TRANSLATION PROJECT MANAGEMENT

Across Languages and Cultures 4 (1) (2003)

115

2.2.4. Control Structures

Control structures are what makes programming languages such a powerful
tool. The most important ones are if-statements and loops.

If-statements

These allow you to execute some commands or not depending on some condi-
tion. In Perl they have the following form:

if (condition1) {
 action1
} elsif (condition2) {
 action2
} else {
 default action
}

The elsif and else blocks are optional.

Loops

These can take many different forms. The most useful ones are foreach and
while loops. With foreach you can iterate over a list and do something with
each of its elements. For example, to print the fruit dictionary stored in %gloss
we can use the following loop:

foreach my $fruit (keys %gloss) {
 print “In Spanish $fruit is $gloss{$fruit}\n”;
}

We use keys to make a list of the keys in %gloss for the loop to iterate over.
On each iteration the next element of the list is assigned to the $fruit vari-
able, which we then print out and use to access the values in %gloss.

With while loops you can execute a block for as long as a certain condi-
tion holds. The general form is this: while (condition) { action
}. This control structure is often used to process, for example, each line or each
paragraph in a file in turn.

2.2.5. Input/Output

For Perl programs to be useful they need to be able to communicate with the
outside world. One way to exchange data is by means of a terminal window.
The user can input data with the keyboard and the program can print informa-

GRZEGORZ CHRUPAŁA

Across Languages and Cultures 4 (1) (2003)

116

tion on the screen. This is normally done by reading from the STDIN (standard
input) and writing to STDOUT (standard output) handles. We can get data from
the user in the following way:

print “What language do you want to use?\n”;
$answer = <STDIN>;
chomp($answer);
if ($answer eq ‘English’) { print “Hello\n”}
elsif ($answer eq ‘Polish’) { print “Cześć\n”}
else { print “I don’t speak $answer\n”}

A few things to note here: <> is used to read from a filehandle; the chomp
function deletes the return (\n) character from the string keyed in by the
user; the eq operator is used to compare strings (for numbers == would be
used).

Perl can also read and write data to handles assigned to files. You can open
a filehandle with the open function like this:

open($read, “<”, ‘fileA.txt’);
open($write, “>”, ‘fileB.txt’);
open($append, “>>”, ‘fileC.txt’);
while (my $line = <$read>) {
 unless ($line eq “\n”) { print $write $line }
}

The filehandle will be accessible via the first argument you give to open (a
scalar variable in this case but you can also use a bare-word identifier such as
IN instead), the second argument specifies if the file is to be opened for read-
ing, (over)writing or appending, and the third argument is the name of the file.
Above we have used a while loop to bind each line read from $read to the
$line variable and then print it out to $write if it does not consist of a single
newline. unless is, of course, like a negated if-statement. There is a very use-
ful special null filehandle which you can use with a while loop like this: while
(<>) {block}. With this loop you can give your Perl script a list of files on
the command line and it will treat them as if they were one continuous file and
read them (unless you specify otherwise they will be read line by line):

open($append, “>>”, ‘appended.txt’);
while(my $line = <>) { print $append $line }

If your script is called append.pl, then the contents of file1 to file4 will be
appended to the file appended.txt.

> perl append.pl file1 file2 file3 file4

PERL SCRIPTING IN TRANSLATION PROJECT MANAGEMENT

Across Languages and Cultures 4 (1) (2003)

117

The contents of file1 to file4 will be appended to the file ap-
pended.txt. If your shell does wildcard expansion, you can invoke the script
like:

> perl append.pl *.html

and Perl will read all files in the current directory whose names end in .html
and append them to appended.txt.

2.3. The Perl Library

One of the main advantages of Perl over other scripting languages is its vast li-
brary. Perl has been widely used for many years and has accumulated a
substantial body of code developed by users for their needs and submitted to
CPAN. Most of this code is covered by the same licensing terms as Perl itself.

2.3.1. Using Modules

Perl makes code reuse easier by providing a simple module system. A module is
a container for code that provides a user interface to the functionality it imple-
ments. Some modules are included in the Perl distribution: these form the
Standard Library. Others are available for download on the Internet, most nota-
bly at CPAN sites. These have to be installed before they can be used. There is
one module, CPAN.pm, that automates finding, retrieving and building modules
from CPAN.

A module’s interface is normally described in the documentation that ac-
companies it. The simplest way to start using a module is to read this
documentation, and put a use statement at the top of the script. It has the fol-
lowing form:

use <ModuleName>

For example, in order to be able to use the Encode module to convert be-
tween different text encodings simply say use Encode at the beginning of
your script.

Modules can use two different types of interface:

• Functional − The module exports functions that the user can call in the

same way as built-in Perl functions.

GRZEGORZ CHRUPAŁA

Across Languages and Cultures 4 (1) (2003)

118

• Object-oriented − In this style of interface, the user creates objects de-
fined by the module and calls methods on these objects. One needs a
basic understanding of OO-programming in order to use this style of in-
terface.

Module names are usually nested, that is, the part before :: indicates the broad
category to which the module belongs. For the purposes of text and natural lan-
guage processing, the following categories, among others, contain useful code:
Text, HTML, XML, String, Lingua. Use of modules is illustrated in some
script examples in Section 4. For example, we use HTML::TokeParser to
process HTML files (Section 4.1), and XML::Writer in order to produce
XML output (Section 4.2.1).

3. REGULAR EXPRESSIONS

Regular expressions are a tremendously useful feature of Perl and one of the
principal reasons for its popularity. Their use, however, is not restricted to Perl:
the Unix operating system supports them, many text editors do as well, and
even some word processors and CAT tools do, too. Regular expressions are
available in many programming languages but Perl’s version is often regarded
as the most powerful one.

3.1. What Are Regular Expressions?

Regular expressions are a way of describing strings in a compact way. Their
main use is to search texts for sequences of characters that match certain pat-
terns and possibly replace them with other strings. The notion of regular
expressions comes from formal language theory and automata theory. They are
capable of describing the same languages as the related notion of regular gram-
mars – the most constrained type of grammars in the Chomsky hierarchy – and
such languages (regular languages) are also the ones expressible by means of
finite state automata. This means that regular expressions can be computation-
ally implemented as this kind of automata (Jurafsky and Martin 2000).

As already noted, there are different applications that use regexes (as the
name regular expressions is often abbreviated) with slightly differing syntax.
Here I will concentrate on the Perl version of them.

PERL SCRIPTING IN TRANSLATION PROJECT MANAGEMENT

Across Languages and Cultures 4 (1) (2003)

119

3.2. Perl Regex Syntax

A regular expression is a pattern a string can be matched against. All the alpha-
numeric characters match themselves, e.g., /April 29/ matches with the
string April 29. There are also characters with special meaning. The most
important ones are:

• . is the wildcard – matches any character. So /.ove/ matches dove,
love, move, qove, etc.

• [] defines a character class. The regex /[ieaou]/ matches any
“vowel” letter.

• /[a-z]/ matches any lowercase English letter.
• – (hyphen) is used to indicate ranges inside [].
• ^ (caret) as a first character inside square brackets negates the character

class. /[^ieaou]/ will match anything that is not a “vowel” letter.
Outside of square brackets, the caret matches beginning of line.

• $ matches end of line. /^$/ matches an empty line.
• {} encloses number of times previous character has to appear.

/20{4}/ matches 20000.
• Kleene star (or asterisk) indicates previous character appears zero or

more times. /20 *000/ matches 20000, 20 000, etc.
• + previous character has to appear at least once. /^.+$/ matches a

non-empty line.
• ? previous character has to appear zero times or once. /p?sicosis/

matches psicosis or sicosis. If it follows another modifier such
as * or +, then it controls the greediness of the match. /<.*>/ will
match as many times as it can (in the following string, it will match all
of it: ‘<p></p>
’). /<.*?>/ will match as few times as it
can: so the first time it will match <p>, the second </p>, etc.

• |- separates alternatives. /Ch(om|imp)sky/ will match either
Chomsky or Chimpsky.

• () parentheses are used for grouping and for capturing matches. With
/(Marie) +(Curie)/ we can capture and store Marie in $1 and
Curie in $2. This can be used to replace all occurrences of Marie
Curie with, for example Curie, Marie.

• \ the backslash can have two meanings:
o Treat the next special character as literal. /*/ will match an as-

terisk.
o Treat the next alphanumeric character as special. Some of these

are:

GRZEGORZ CHRUPAŁA

Across Languages and Cultures 4 (1) (2003)

120

− \n newline
− \t tabulator
− \s whitespace (newline, tab or space)
− \w alphanumeric character
− \d same as [0-9]

The above are just the bare bones of Perl regular expressions. There are
many more useful extensions. They are used in Perl programs with different
modifiers that follow them. The two most important ones are i, which makes a
pattern case-insensitive and g, which makes the regex match all occurrences of
a matching string instead of just the first one. The string to be scanned is speci-
fied with the =~ operator. If you just want to match, precede the regex with an
m; if you want to substitute, prepend an s. An example will clarify;

$string = ‘Más Plátanos que
Maracuyás’;
$string =~ s/á/á/;
print $string, “\n”;
$string =~ s/á/á/g;
print $string, “\n”;
if ($string =~ m/plátanos/i) { print “ñam, ñam\n”}

The first substitution will only replace the first HTML entity á with
the corresponding accented letter. The second substitution will replace all the
matches because of the g modifier. The if-statement will not modify the string:
it will simply execute its block if the condition is true – in this case if the string
matches the case-insensitive regular expression. So we will get these three lines:

Más Plátanos que Maracuyás
Más Plátanos que Maracuyás
ñam, ñam

Another useful operator is e which evaluates any expressions in the regex.
This allows you to give the match to a function and substitute the result. The
following regular expression multiplies all numbers in $string by 2.

$string =~ s/([0-9]+)/$1*2/eg

Together with the null filehandle and one more special variable $^I, regu-
lar expressions give us very flexible search-and-replace possibilities. What $^I
does is to turn on the in-place edition. For example, the following code makes
backup copies of all files given to it on the command line and then replaces
prices in pesetas with prices in euros.

PERL SCRIPTING IN TRANSLATION PROJECT MANAGEMENT

Across Languages and Cultures 4 (1) (2003)

121

use utf8; use locale;
$^I = ‘.bak’;
while (<>) {
 s/([0-9])[\.]([0-9])/$1$2/g;
 s{([0-9]+) *p(ese)?tas}

 { sprintf(“%.2f”, $1/166.38) . ‘€’}egi;
 print;
}

The string you assign to $^I is suffixed to each backup file name. Inside the
while loop there are three lines which seem a bit cryptic. They make use of
another implicit variable $_ similar to @_, but scalar rather than array. The
while loop assigns each line of input in turn to $_.Functions inside the loop are
assumed to take this variable if no argument is provided.

The first substitution regex removes any spaces or thousand-separator
points from numbers. The second converts pesetas to euros: a dot operator (.) is
used to concatenate the result of the division with the euro symbol string. The
print function finally prints the modified line back to the file. This is a very
crude script and it could be improved in numerous ways, but it shows how with
a few lines of code we can perform some useful and not so simple text opera-
tions.

4. SCRIPTS IN TRANSLATION

Having picked up some Perl or other scripting language, you can start automat-
ing some of the more tedious tasks you encounter in translation project
management. In this section, some chosen examples of such computationally
improvable processes will be reviewed. One factor to bear in mind is that Perl
scripts are text-oriented: it is very easy to deal with text formats such as plain
text, markup (HTML, SGML/XML, LaTEX, RTF), or CSV. It is less straight-

forward to process directly proprietary binary formats such as those typically
output by office suites. You can still work with those if you save the document
in some text format, or if you find a library module that supports your format.

4.1. Search and Replace

The most obvious application of scripts in translation project management is
probably to use them to bulk search-and-replace. This sort of task is so common
that there are even some specialized applications that do just this. All they do,
and more, can also be achieved with Perl scripts. A script which does something

GRZEGORZ CHRUPAŁA

Across Languages and Cultures 4 (1) (2003)

122

uncomplicated such as search-and-replace will mostly fit on a single line, so it
is unnecessary to save it in a file: you can simply type on the command line.

A common search-and-replace operation involves deleting hard linebreaks
from plain text files (such as README files) while at the same time conserving
the double or multiple linebreaks that separate paragraphs (useful if you want to
edit a plain text file in a word-processor). One solution is to conserve the double
newlines and delete the rest. Here is a oneliner that does just this:

> perl –i“.bak”-p -00 -e “s/\n([^\n])/ \1/g”myfile.txt

This is pretty dense. Here is what is going on in this line: The -i option is the
command line equivalent of the $^I variable: it makes a backup file named
myfile.txt.bak. The next two options are -e which tells Perl to evaluate
the code that follows between quotes, and the -p option which wraps this code
in a while(<>){...print} loop. The -00 option sets the default record
separator to the null string, which makes the script read the file paragraph-by-
paragraph instead of line-by-line (so we can check what follows a newline!).
This is equivalent to saying $/ = ‘‘ in your script. Then there is the actual
code: a substitution regex that replaces with spaces all those newlines that are
followed by a character other than a newline (\1 is the same as $1 except the
latter will not work on command line). The same code written in a less elliptical
style would read:

$^I = ‘.bak’;
$/ = ‘‘;
while(my $text = <>) {
 $text =~ s/\n([^\n])/ $1/g;
 print $text;
}

But it is often more convenient to type such simple, one-off operations directly
on the command line without having to save them in a file.

You might use the following oneliner to remove HTML markup from all
.htm and .html files in a directory.

> perl -i’.bak’ -p0777e “ s/<.*?>//g” *.htm*

Here we have combined three options -p,-0777 and -e. The -0777 makes
Perl slurp the whole file at once instead of line-by-line. This is necessary, be-
cause some HTML tags can span more than one line. The code that removes the
tags is rather simplistic and will not work for some complicated cases such as
tags embedded in HTML comments and the like. To treat these cases properly it
is better to use a module such as HTML::Parser or HTML::TokeParser. For ex-

PERL SCRIPTING IN TRANSLATION PROJECT MANAGEMENT

Across Languages and Cultures 4 (1) (2003)

123

ample, the following script will strip HTML tags form the file index.html in
a less error-prone way and will put the result in index.txt.

use HTML::TokeParser;
open($strip, “>”, ‘index.txt’)
 or die “Can’t open: $!”;
$p = HTML::TokeParser->new(‘index.html’)
 or die “Can’t open: $!”;
while(my $token = $p->get_token) {
 if ($token->[0] eq ‘T’) {
 print $strip $token->[1];
 }
}

The module parses the input file and returns tokens of type ‘S’ (start tag), ‘E’
(end tag), ‘T’ (text), etc. You then simply check the type of token returned and
print it out or not. The module does most of the work for you.

Another interesting oneliner will insert thousand separators into all num-
bers in a file or a series of files.

perl –i “.bak” -pe “while (s/(\d)(\d{3}[\.\s])/\1 \2/)
{}” *.txt

This code inserts separator spaces but it could put in dots or commas depending
on the locale. It works by introducing a second internal while loop that re-
peatedly scans the line for sequences of four digits followed by a decimal period
or a space and inserts a space after the first digit. When all the necessary spaces
are inserted it prints the line and goes to the next one by virtue of the external
(implicit) while loop. Note that the scanning and inserting is packed into a
single substitution regex in the condition to the internal while loop; that is
why the block that follows is empty.

There are many more things that can be done with simple compact scripts
like the ones above. Many of them are very project-specific and thus of limited
general interest. According to your needs, they can easily be written on the fly.

4.2. Acquiring Terminology

An area where scripting is a virtual must is terminology acquisition. The termi-
nology management systems that normally come with CAT applications are
perfectly suited to deal with already existing, highly structured terminological
resources that reside in databases.

GRZEGORZ CHRUPAŁA

Across Languages and Cultures 4 (1) (2003)

124

They also provide some import features that help to acquire or upgrade
terminology in legacy formats. But these features are fairly useless if you have
to import such notoriously unstructured sources as PDF documents or electronic
glossaries in HTML distributed among hundreds of files. These are normally
optimized for visual appeal rather than for structuring and separating informa-
tion. Below we are going to see examples of how these sources can be
processed by means of custom Perl programs. Relatively uncomplicated exam-
ples have been chosen so as to be able to focus on the general techniques rather
than have to deal with the nitty gritty of specific cases.

4.2.1. A Spanish-Czech Glossary

In the following example, we are given two files to process. They both specify
what different parts of a car are called: one is in Spanish, the other one in
Czech. They look like this:

Spanish:

F 8 - Conmutador kick-down
F 9 - Conmutador para control del freno de mano
(01114)
F 10 - Conmutador contacto puerta trasera izquierda
(01708)
F 11 - Conmutador contacto puerta trasera derecha
(01709)

Czech:

F8 - spínač pohybu pedálu akcelerace
F9 - spínač kontrolky ruční brzdy
F11 - pravý dveřní spínač zadní

What we want is a single file in an easily importable format. One choice is

to build a simple, flat text file with one record per line, with terms separated by
tabulators:

Conmutador kick-down spínač pohybu pedálu akcelerace

With a Perl script this will be a pretty easy task, but there are some things to
bear in mind. First, the exact format of the identifier is not the same in the two
files (in Czech there are no spaces between the letters and numbers). Second,
the Spanish file includes some parenthesized numbers that we do not want in
the target file. Also, not all Spanish terms have a Czech equivalent. The main

PERL SCRIPTING IN TRANSLATION PROJECT MANAGEMENT

Across Languages and Cultures 4 (1) (2003)

125

task will be to build up a hash of hashes, with the normalized identifiers as keys
and hashes of filename => term pairs as values. We use filename to indi-
cate which language a given term corresponds to. Then we can iterate over this
hash and print it out to the target file. A possible solution would be the follow-
ing:

foreach my $file (@ARGV) {
 open(my $fh, “<”, $file)
 or die “Can’t open: $!”;
 while (my $record = <$fh>) {
 next if $record =~ /^$/;
 my ($key, $term) = split(‘ – ’, $record);
 $key =~ s/\s//g;
 $term =~ s/(\(\d+?\))|(^\s+)|(\s+$)//g;
 $glossary{$key}{$file} = $term if $key ne ‘‘;
 }
 close($fh);
}

open(my $out, “>”, ‘es-cz.txt’)
 or die “Can’t open: $!”;
foreach my $key (sort(keys %glossary)) {
 print $out join(“\t”,
 values %{ $glossary{$key}}

), “\n”;
}

The first foreach loop iterates over the special array @ARGV which con-
tains the elements given to the script as command-line arguments. If the script is
invoked like this:

> perl myscript.pl spanish.txt czech.txt

then the @ARGV will consist of two elements. So this loop will first open the
spanish.txt file, read the records and store them in the %glossary hash
and then repeat this for the czech.txt file.

The next command inside the while loop skips empty lines. The first
substitution regex removes whitespace from the identifiers and the second one
deletes the parenthesized digits and any leading and trailing whitespaces from
the terms. Then we open the output file, iterate over the keys of the %glos-
sary hash and print out the values of the internal hashes joining them with
tabulators.

As can be seen, in Perl the whole process is pretty trivial. However, relying
solely on the import capacities of existing CAT tools it would be virtually im-

GRZEGORZ CHRUPAŁA

Across Languages and Cultures 4 (1) (2003)

126

possible to do anything useful with the kind of data we had as input. But once
they are converted by this script, they can be imported in a totally straightfor-
ward way.

This case was so easy in part because the source file contained only very
basic information: just terms assigned to unique identifiers. But in other cases
you may be faced with a more complex source that includes multiple languages,
synonyms, definitions and a variety of other terminological information. Repre-
senting this in a flat file with one record per line can be difficult and awkward.
In these cases what can be done is to use one of the markup text formats em-
ployed for import and export by the terminology application that we are trying
to import into.

In MultiTerm by Trados, records are separated by ** and inside the record
a two-level tagging scheme is used: the-first level tags mark the beginning of a
language section, and inside each language section tags are used to mark fields
such as term, definition, synonym, abbreviation and cross-reference. This kind
of format is simple and easy to produce.

TermStar by STAR adopts a different solution: it uses the XML-based
Martif standard. XML document types usually have a formal specification using
the DTD (Document Type Definition) syntax, so their validity can be automati-
cally verified. The Martif standard is specified in the Martif DTD.

This is both more flexible and more complex to produce than the
MultiTerm scheme. And, at least in principle, it could be used by an application
other than TermStar since XML is a widely supported standard.

Although writing well-formed XML documents can be complex, it is sim-
plified to a large degree by the use of a helper module, such as for example
XML::Writer. Below is part of a program that uses this module and that can be
used to write a simple Martif document. This document will be well-formed,
but we will not validate it against the Martif DTD, since for our proposes this is
unnecessary. What is important is that the application that is to use the output
file accepts it as valid and interprets it correctly.

use XML::Writer;
use IO;
my $out = IO::File->new(“>mtf.xml”);
my $w = XML::Writer->new(OUTPUT => $out, DATA_MODE =>
1);
sub startMartif {
 my $w = shift;
 $w->startTag(‘martif’);
 $w->startTag(‘text’);
 $w->startTag(‘body’);
}

PERL SCRIPTING IN TRANSLATION PROJECT MANAGEMENT

Across Languages and Cultures 4 (1) (2003)

127

sub endMartif {
 my $w = shift;
 $w->endTag(‘body’);
 $w->startTag(‘back’);
 $w->endTag(‘back’);
 $w->endTag(‘text’);
 $w->endTag(‘martif’);
}

sub writeTerm {
 my ($w, $term, $termType, $def) = @_;
 $w->startTag(‘ntig’);
 $w->startTag(‘termGrp’);
 $w->dataElement(‘term’, $term);
 $w->dataElement(‘termNote’, $termType,
 ‘type’ => ‘termType’);
 $w->dataElement(‘descrip’, $def,
 ‘type’ => ‘definition’)
 if defined($def);
 $w->endTag(‘termGrp’);
 $w->endTag(‘ntig’);
}

At the beginning of the script we have created the object $w that will be
used to write out the data. Then three subroutines are defined which make it less
tiresome to wrap the data in the appropriate Martif tags. The important subrou-
tine is writeTerm() which can be used to write out a term group consisting
of a term, its type (full form, synonym, abbreviation, etc.), and an optional
definition. These subroutines could be modified to create application specific
elements such as hyperlinks, cross-references or data on the person who created
and modified a record. But we will keep the example simple. So far the program
above does not do anything; what needs to be added is the part that actually
processes the input data and writes them out using the methods of XML::Writer
and the subroutines we defined. Consider the following fragment of a glossary
in HTML format:

carro
orientable

 <i>combinación de una corredera</i>

 <i>portaherramientas y de un plato
giratorio</i>

 DEU drehbarer Werkzeugschlitten

 ENG swivel top slide

 FRA coulisse supérieure pivotante

GRZEGORZ CHRUPAŁA

Across Languages and Cultures 4 (1) (2003)

128

The processing problems it presents are fairly typical of HTML documents:
they are made to be displayed to human readers rather than be easily processed
by machines. The information is not clearly structured as it is in XML – here we
will use Perl regular expressions to extract it. We will add the following code to
our program.

$/ = ‘
<a’;
startMartif($w);
while(my $rec = <>) {
 my ($spa, $def, $langs) =
 $rec =~
 m{NAME.+?(.+?).+?<i>(.+)</i>(.+)}s;
 $def =~ s/(<.+?>|)//g;
 my ($deu, $eng, $fra) =
 $langs =~
 m/[A-Z]{3}\s\s(.+?)$/gm;
 writeTermEntry($w, $spa, $def,
 { ‘deu-de’ => $deu,
 ‘eng-gb’ => $eng,
 ‘fra-fr’ => $fra }
) if defined($spa);
}
endMartif($w);
$w->end();

sub writeTermEntry {
 my ($w, $spa, $def, $langs) = @_;
 $w->startTag(‘termEntry’, ‘id’ => $id++);
 $w->startTag(‘langSet’, ‘lang’ => ‘spa-es’);
 writeTerm($w, $spa, ‘full form’, $def);
 $w->endTag(‘langSet’);
 foreach my $lang (keys %{$langs}) {
 $w->startTag(‘langSet’, ‘lang’ => $lang);
 writeTerm($w,
 $langs->{$lang},
 ‘full form’);
 $w->endTag(‘langSet’);
 }
 $w->endTag(‘termEntry’);
}

We read the file record by record (by setting input separator to
<a’). The
main while loop extracts terms in Spanish, German, English and French, plus
the Spanish definition, and passes these data to the writeTermEntry() sub-

PERL SCRIPTING IN TRANSLATION PROJECT MANAGEMENT

Across Languages and Cultures 4 (1) (2003)

129

routine which writes them out to the output file. A fragment of the resulting
Martif file looks like this:

<langSet lang=“spa-es”>
<ntig>
<termGrp>
<term>carro orientable</term>
<termNote type=“termType”>full form</termNote>
<descrip type=“definition”>combinación de una corredera
portaherramientas y de un plato giratorio</descrip>
</termGrp>
</ntig>
</langSet>

As can be seen, this format allows for easy structuring of information by means
of nested elements delimited by start and end tags. The file output by the script
should be directly importable into a Martif aware application (such as Term-
Star) without the need to define any additional import options.

If you use a CAT or terminology tool that uses an XML standard such as
Martif, it might be worthwhile implementing a helper module that would spe-
cifically serve to output data in this format. Above only a few subroutines were
defined to produce an acceptable well-formed Martif file, but for serious work a
module with complete support of a given DTD would be more useful. However,
this falls beyond the scope of the present paper.

4.3. Other Areas of Application

In this section, we will briefly discuss other areas where scripting can prove of
use, without going into the details of implementation. They are more complex
than the scripts presented so far and draw on the existing body of research and
on specific techniques in corpus and computational linguistics (Brew and
Moens 2000; Jurafsky and Martin 2000). There are also dedicated software ap-
plications that provide the functions described below. However, if you need
them only occasionally or if you want highly customized solutions it might be
preferable to write your own scripts.

4.3.1. Custom Statistics

Modern CAT suites provide all sorts of fairly sophisticated statistics useful for
project management tasks such as monitoring progress or pricing. Even so, you
may sometimes need something they are not capable of. In these cases you can
write a script that does the job.

GRZEGORZ CHRUPAŁA

Across Languages and Cultures 4 (1) (2003)

130

Translation Consistency: CAT is supposed to ensure that your transla-
tions are consistent: the same source language segments are translated in the
same way each time they occur (unless context requires otherwise). This is due
to the use of translation memory: you only translate a given segment the first
time it occurs; on subsequent occurrence it will be retrieved from the memory
and you can reuse it.

This does work with small projects where each target language is covered
by an individual translator. However, when the project has to be distributed
among various translators who all work into the same language simultaneously,
inconsistencies may arise. You can try to detect them by writing a script that for
each source segment tells you if different translations exist, what they are and in
which place in the text they appear. It could also provide some context, e.g., the
previous and the following segment. In this way you can tell if the variants are
legitimate or not and correct them when appropriate.

Probably the easiest way to implement such a script would be to export
your projects to the TMX (Translation Memory Exchange) format, which is an
XML document type, and process these TMX files rather than work directly on
the internal format of your CAT application.

Types and Tokens: A measure of the lexical variety of a text can be ap-
proximated by its type per token ratio. This is obtained by tokenizing the text
(dividing it into words and optionally normalizing them to lower case) and then
dividing the total number of word-tokens by the number of unique words
(word-types). The first sentence in this paragraph contains 17 tokens, but only
15 types (‘a’ and “of” count just once for the type count). So the ratio is around
0.882.

This ratio on its own is only useful for comparing texts of the same length,
since it tends to decrease as text length increases. The implementation of a
script that provides type per token ratios for alphabetic languages would in-
volve:

• Extracting the plain text from the document (e.g., in the case of HTML

stripping the tags);
• Dividing the text into individual word-tokens using whitespace and

punctuation as delimiters;
• Getting type and token counts and calculating the ratio.

The kind of statistics described above is probably more useful in transla-

tion studies than in technical translation management proper. However, some
of the same techniques employed to obtain it can be used for rough terminol-
ogy extraction, which can be of less restricted usefulness. More on this below.

PERL SCRIPTING IN TRANSLATION PROJECT MANAGEMENT

Across Languages and Cultures 4 (1) (2003)

131

4.3.2. Word Frequencies and Terminology Extraction

Word frequency information is often used to perform a rough, semiautomatic
extraction of significant terms from a text. As a result we get a list of words that
have a high probability of being specialized terminology. These could be given
equivalents in the target language(s) and introduced into the project dictionary
to improve terminological consistency.

A script which produces such a list of potential terminology could be im-
plemented in a variety of ways, but the first two steps would be the same as in
the one that calculates type per token ratio: extraction of plain text and tokeniza-
tion. Additionally, each type would be assigned an integer indicating its
frequency in the text. On the basis of this information, we could put on the ter-
minology list all the words above a certain frequency, minus those on an
exclusion list. Such a list could include known stop-words and/or words below
certain length.

Alternatively, two cut-off points could be established in the rank order, ex-
cluding words below and above it. The words above would tend to be common
function words, and those below to be irrelevant. The same procedure could be
performed with bigrams (or trigrams) in addition to words in order to capture
complex terms.

4.3.3. From Translation Memory to Glossary

Some translation projects involve documents that are highly fragmented lists of
out-of-context strings. This is often the case in software localization or invento-
ries of machine parts. In these cases it is often useful to be able to convert a TM
(Translation Memory) into a glossary and vice versa. For example, in a software
localization project it could be advisable to translate the user interface first.
Then the resulting TM will consist of short strings that are unlikely to appear on
their own in the user manual or the helpfiles. However, they will often occur
embedded in larger segments. So you can reuse your resources more efficiently
if you convert your TM to a glossary, so the translators can easily retrieve the
strings using the terminology application that is part of the CAT suite. Depend-
ing on the CAT application in question this could be a non-trivial task (e.g.,
with Transit).

Such a conversion can be done with a Perl script. Again, processing the
TMX file exported by the CAT application and writing the extracted data to a
flat text file or a tagged terminology format would be the most straightforward
way of implementing it.

GRZEGORZ CHRUPAŁA

Across Languages and Cultures 4 (1) (2003)

132

5. CONCLUSIONS

In this paper we have looked at different ways in which small programs written
in a scripting language can complement CAT solutions in translation project
management. We have implemented some simple examples in Perl and dis-
cussed other possible uses of scripting. We have argued that the flexibility of a
programming language is difficult to achieve with ready-made software solu-
tions such as existing CAT applications. In the area of translation management
there is much potential for improving efficiency and relieving humans of me-
chanical tasks.

Programming techniques for translation need not be invented from scratch:
we can draw on existing code. For natural language processing there is all the
experience accumulated in corpus and computational linguistics. For dealing
with markup formats there is an even larger body of code developed in system
administration, networking and other areas. As the field of translation is becom-
ing more and more dependent on technology, translation managers will
increasingly benefit from familiarity with computational techniques or from col-
laboration with IT professionals.

Acknowledgements

I would like to thank Anthony Pym, of the Universitat Rovira i Virgili, and
Harm Smit for having read this paper and made many useful suggestions.

References

Brew, C. & Moens, M. 2000. Data Intensive Lingusitics. World Wide Web,

http: //www.ltg.ed.ac.uk/~chrisbr/dilbook/dilbook.html.
Jurafsky, D. & Martin, J. H. 2000. Speech and Language Processing: An Introduction to Natural

Language Processing, Computational Linuistics and Speech Recognition. New York: Pren-
tice Hall.

Schwartz, R. & Christiansen, T. 1998. Perl Cookbook. Cambridge, MA: O’Reilly and Associates.
Wall, L., Christiansen, T. & Schwartz, R. L. 2000. Programming Perl. Cambridge, MA: O’Reilly

and Associates, third edition.

