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Abstract

The distinction between raising and subject-control vedihough crucial
for the construction of semantics, is not easy to make gieeass to only the
local syntactic configuration of the sentence. In most cdateising verbs
and control verbs display identical superficial syntactiacture. Linguists
apply grammaticality tests to distinguish these verb @asOur idea is to
learn to predict the raising-control distinction by simtiig such grammati-
cality judgments by means of pattern searches. Experimétiigegression
tree models show that using pattern counts from large urtatetbcorpora
can be used to assess how likely a verb form is to appear imga¥s. con-
trol constructions. For this task it is beneficial to use thehlarger but also
noisier Web corpus rather than the smaller and cleaner Gighworpus. A
similar methodology can be useful for detecting other laksemantic dis-
tinctions: it could be used whenever a test employed to miakgistically
interesting distinctions can be reduced to a pattern séarah unannotated
corpus.

1 Introduction

In this paper we investigate to what degree very large unatem corpora can be
useful in acquiring detailed specifications of verbal stbgarization: specifically
we attempt the task of detectimgising andsubject controlerbs.

The task of data-driven lexical acquisition is interestirgm at least two points
of view. First it can shed light on the process of lexical feag from linguistic
input in humans. Second, it is relevant for Natural Langugggineering, where
detailed information on subcategorization requiremeffitexical items is useful
for parsing.

Distinguishing between raising and control verbs is a simalinteresting and
seldom investigated aspect of automatically acquirindpaklexical resources. In
this paper we propose to make a somewhat non-standard usgefunannotated
corpora to aid lexical acquisition. We extract featuresaisded with raising and
control verbs in a large unannotated corpus, learn a modiehadistinguishes the
two classes using a small annotated (gold) corpus, and thefy \Yaow well our
model predicts the two classes in a held-out portion of tHd gorpus.

The errors our model makes may be partly be due to the liroitatiof the
method we use, i.e. the features we extract or the learnirgdhamesm we employ.
More interestingly, they may also reveal mistakes or oroissiin the small gold
manually constructed resource when contrasted with usiagesge amounts of
naturally occurring data. In Section 6 we discuss thoseesgumore detail.

The structure of the paper is as follows: In Section 2 we byridéscribe the
raising-control distinction and its treatment in LFG. Inc8en 3 we briefly discuss
previous work. In Section 4 we describe the methodology asdurces used,
while in Section 5 we present the experimental evaluatiagmalfy in Section 6 we
discuss the implications of our results and present ourlosions.



Figure 1: F-structure foMary seems to slegpaising - functional control)

SUBJ [PRED ‘Mary’]
PRED ‘try (SUBJ COMP)’

SUBJ [PRED ‘pro’]
COMP

PRED ‘sleep/SUBJ0BJ)’
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Figure 2: F-structure foMary tries to sleegganaphoric control)

2 Raising and control verbs

In Englishraising verbs are verbs suchseem They require a syntactic subject
which does not correspond to a semantic argument.

Subject controlerbs are matrix verbs such &y one of whose arguments is
shared with the the subordinate verlB'sBJ In Dalrymple (2001) they receive a
treatment in terms of obligatory anaphoric control, whéiedomMPs SUBJS PRED
value is bound to the matrix verb&uBJ(see Fig. 2).

In Bresnan (2001) subject control verbs are treated in teffisnctional con-
trol similar to raising verbs (see Fig. 3). In this type of is#s the only thing
distinguishing raising constructions from control constions is the subcat frame
(semantic form): the fact that the subject argument is n@naasitic argument of
the raising verb is indicated notationally by putting it side the angle brackets:
‘seemXCOMP)SUBJ.

Whichever analysis one adopts, the distinction betweesingiand control
verbs is important as it affects meaning: the predicate @ettdoyseemss unary
whereas the one encoded toy is binary. Thus it is crucial when constructing the
semantic argument structure for a verb with a non-finite dempent.

There are a number of constructions which distinguish betwhose two verb
classes:

(1)

a. It seemed to rain.
b. There seems to be a problem.



-SUBJ [PRED ‘Mary’}
PRED  ‘try (XCOMP,S@
suBJ [ ]

XCOMP [

PRED ‘sleep(SUBJ,OBJ>’]

Figure 3: F-structure foMary tries to sleegfunctional control)

c. Did she leave? *She seemed.

(2) a. *lttried to rain.
b. * There tried to be a problem.
c. Did she leave? She tried.

English raising verbs appear with dummy subjects as in elesnfia) and
(1b). They do not admit VP drop (1c). Control verbs exhibé tipposite behavior
as shown in (2).

3 Previouswork

In most contexts, raising verbs and control verbs displaptidal superficial syn-
tactic structure. Many resources meant to provide traiaing evaluation material
for data-driven computational methods do not encode thengicontrol distinc-
tion in any way; examples include the Penn Treebank (Martus.,e1994), or
the PARC 700 Dependency Bank (King et al., 2003). O’Donovaal.e(2005)
implement a large scale system for acquiring LFG semantimgausing the Penn
Treebank but do not differentiate between frames for rgisind control verbs.

Briscoe and Carroll (1997) mention in passing that the faat argument slots
of different subcategorization frames for the same verbieskize same semantic
restrictions could be used to learn about alternations éib participates in and
thus make inferences about raising and control facts. Hemtvour knowledge
neither they nor other researchers have followed on thesesidnd there have been
no studies specifically focusing on acquiring the raisiogtool distinction.

In the following sections we investigate whether frequenounts from very
large corpora can be used to reliably distinguish those &b ¢lasses.

4 Methods

The raising-control distinction is not easy to make giveoess to only the local
syntactic configuration of the sentence. However, spedkave little difficulty
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Figure 4: Propbank-style annotation for the raising camtion withseem

in applying grammaticality tests such as those in exampléo(dlistinguish these
verb classes. Our idea is to simulate making those gramatiifigudgements.
We hypothesize that the absence of evidence approximaithsnee of absence: a
simple construction, if it is grammatical, is bound to shgwimia sufficiently large
amount of naturally occurring language data. So a gramuatatidest reduces to a
pattern search in a corpus.

There are two complicating factors:

e the need for a very large corpus to minimize the chance tleaalbisence of
matches is accidental rather than systematic

e the inevitable presence of noise in the form of false pasitivatches, for
example caused by misspellings, interlinguistic intenfee or automatically
generated pseudo-language.

These two factors have to be traded off against each otherpas with carefully
selected text samples is likely to be mostly free of noisewilitprobably be too
small to avoid false negatives. Conversely, a terabytescarpus will almost
inevitably contain some proportion of false positives dueaise.

We use two types of corpora in our study. First we use a reltismall corpus
annotated with syntactic structure and semantic roles,ehathe English Prop-
bank (Palmer et al., 2005). This contains the same text agrigksh Penn Tree-
bank. Each verb form is annotated with the labeled semargimaents it governs.
The semantic roles are to a large extent verb-specific andardered agRG
throughARGs;. In generalARG, can be said to correspond to a prototypical Agent
(Dowty, 1991) andarG; is the prototypical Patient. The higher-numbered roles
are completely verb specific and no generalizations can loerabout them.
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Figure 5: Propbank-style annotation for the control cartton withtry

Thanks to the information about semantic roles which Proglennotations
add to Penn treebank trees, it is possible to distinguissingiiand control con-
structions. In Figures 4 and 5 we present the analyses tlaam@e raising and
control verbs receive in Propbank. In the case of the raismgstruction with
seemthere is a single (discontinuous) semantic argumet;. In contrast, in a
control construction the vertoy has two argumentsRGy andARG; .

We use the English Propbank to extract verb forms which appeeast 3
times in contructions with non-finite complementsFor each verb form we also
extract the form of the complement (to-infinitive or gerund each verb form
we assign the maximum-likelihood estimate ofrigsing probability Pr(v), i.e.
the proportion of times it appears in raising constructioie take the presence of
the ARGy semantic argument to indicate a subject control consbmaind its lack
to indicate a raising construction. The resulting list 0@ 42rbs forms is randomly
divided into a training set and test set of equal sizes.

The second type of resource we use is a large-scale unaedatatpus of
English text. We experiment with two such corpora Gigawdsdaff, 2003) (1.7
billion words of newswire) and the English web pages inddxgdfahoo!.

Those large corpora are used to extract frequencies of wwwe of the verb
forms in context that are indicative of the degree to whigyttan appear in raising
contructions (i.ePr(v)). From those frequency counts we derive features used to
train regression models that will predi} (v) for each verb form.

There are a number of choices as to how to extract the mostmiafive occur-
rence frequency counts. In this study we decided to try toimgmammaticality

1The extraction is not 100% reliable, due to annotation sriothe Penn Treebank. For example
in several cases the participle usesafdas inX is said to Yis mistagged as past tense, which is why
saidappears among our 120 verb forms.



tests used by linguists in distinguishing between raisimg) @ntrol constructions.
The assumption which enables us to approximate grammigtipatigements by
corpus searches is that any simple grammatical construiieery likely to occur
in a sufficiently large corpus. There are some importantificatiions that need
to be made about its validity. The construction in questiooutd be as simple as
possible and ideally contain high frequency lexical iterfie semantics associ-
ated with it should be plausible. The search pattern itsefil be possible to run
on un-annotated data and still be resistant to noise.

Those are quite strict prerequisites and it can be hard td keiarch patterns
that satisfy all of them. For example it is challenging to eonp with a template
based on the grammaticality test in (1a) and (2a) which vatlsuffer from some
shortcomingsit X to rain depends on the lexical itemain which is not high fre-
guency enough for most corpus sizes. Even in combinatidm tivé most common
raising verb,it seemed to raironly occurs in two unique sentences in Gigaword.
For the test in (1¢) and (2c), with access just to un-annadtdtga it would very
hard to detect those sentence-final strings such as “seewtddh are VP-drop.
An additional complication is that Web search indexes ssc¥iednoo! do not typi-
cally include punctuation which makes it impossible to desentence boundaries.
Thus in the experiments described below we use the seartdrmmbased on the
test b vs b, which we deemed the most robust.

For each verb fornV tested, we build patterns using the following templates:

(3) a. theréV to be
b. thereV being

(4) a. Vtobe
b. V being

Version (a) or (b) is chosen depending on the complementttypeerb takes.
String (3) is our test pattern which is meant to check whetiee form X is gram-
matical in raising constructions. String (4) is the backgm frequency of verb
form V with a non-finite complement. The ratio of (3) to (4) gives he maxi-
mum likelihood estimate of the probability of dumntiyerein nonfinite comple-
ment contexts.

Gigaword contains articles or portions of articles that igeated: to correct
for inflated counts caused by this we remove duplicate lin@s fthe corpus in a
preprocessing step. We match patterns by ignoring uppesricase.

In the case of the Web we use the Yahoo! search API — we retitdcdearch
to English-language pages, thus relying on Yahoo!s laggtidetection method,
and use théotal result availablenumber as our frequency count, thus trusting the
estimate Yahoo! provides. All the web frequency counts veetkected on a single
day (July 1 2007) and stored to ensure consistency betwgmsriments.



5 Experiments

We performed experiments with two corpora: Gigaword andwhed. We search
for occurrences of the pattern strings (3) and (4) and fohe&cb form we gather
the following scores:

e ((v) = frequency of pattern (3)

e (5 (v) = frequency of pattern (4)

e C1(v)/Ca(v)

51 Modds

We experiment with two baselines and a regression tree modearn to predict
Pr(v) from training examples. As a metric for evaluating the gqyaif the models,
both during cross-validating and for final evaluation, we tise Mean Squared
Error (MSE). For the list of gold scores and the list of predicted scordsfor n
verb forms, this metric is defined as follows:

=0

Mean This is a very simple baseline: for each verb we form preéfigtv) to be
the meanPy, in the training set.

Linear regression This baseline is the linear regression model fitted to trajni
data using”; (v)/C2(v) as the sole explanatory variable. The model for Gigaword
data isPr = 13.2936 x C1(v)/Cs(v)+0.2741, while the Web model has the form
Pr = 11.5011 x C}(v)/Ca(v) 4 0.2547.

Regression tree This is the model obtained by inducing a regression tree.-A re
gression tree is simply a type of decision tree where theoresp at each leaf is a
real number. The tree is built using the recursive partiigrmethod of Breiman
et al. (1984), as implemented in thegart R package (Therneau et al., 2007; Th-
erneau and Atkinson, 2000).

We chose this model because of its relative simplicity aaddparency. At this
stage our main goal was to gain insight from our data rathear gimply maximize
performance.

The algorithm starts by grouping all training examples imagle node. At each
step a split (i.e. a value of one of the features) is choseratttipn the training
examples at the current no@&n such a way as to maximize the splitting criterion:

SSy — (SS;, + SSg) (6)



G/C <47 x1074 G/C <21x10°*

Pr =0.126 Pr=0.919 Pr =0.041 Pr =0.756

Figure 6: The regression tree model: left for Gigaword dagdnt for Web data

Model | Gigaword MSE| Yahoo Web MSE
Mean 0.194 0.194
Linear regressio 0.165 0.164
Regression tree 0.134 0.110

Table 1: Evaluation results on the test set

S St is the within node sum of squares for the current n@envherey; is the
output value for theé'” training example at nod€ andy is the mean of the outputs
of examples at nod#".

SSr=>Y (i —7)° 7
5SSt and SSg are sums of squares for the left and right child given by tHe sp
under consideration.

The same step is applied recursively to both children nodékthe maximum
number of splits is reached or no further splits are possilfler each node the
predicted response is the mean of the instances in this Addetree constructed
in this fashion is then pruned using leave-one-out crofidat#on in order to find
the tree which minimizes Mean Squared Error.

In our experiments we start with all three features but thaulteng pruned
trees only use the ratio featug (v)/C2(v): trees with more depth increase cross-
validated error. Figure 6 shows the regression trees fdr brperiments. For the
Gigaword tree the top node is split@i(v)/Ca(v) < 4.7 x 10~* and for the Web
tree atC; (v)/Cs(v) > 2.1 x 1074

5.2 Results

In Table 1 we report the Mean Squared Error score on the te$biseounts ex-
tracted from the Gigaword and the Yahoo Web achieved by thietso

Our results show that foregression tree the Web counts give models with
lower error on test data in comparison to the Gigaword-basedel.
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Figure 7: Results for Gigaword regression tree

Since both regression trees are of depth 2, in effect bo#s tpartition verb
forms into two classes: predominantly raising verbs andi@mgnantly control
verbs. Figures 7 and 8 illustrate how well that partitionaeges verb forms in
the test data. Both figures plét, againstC; on a logarithmic scale. Each dot
represents a verb form; the varying color indicates theofaithg: black stands for
gold Pr(v) = 0 and red forPr(v) = 1, with intermediate colors encoding values
between 0 and 1. The black curve on each plot separates pothtssame fashion
as the top node in the regression tree model,Gigv) = 4.7 x 10* x C;(v) for
the Gigaword tree and’(v) = 2.1 x 10* x C;(v) for the Web tree.

The complete results obtained by the regression tree madéted with the
Gigaword and Web counts for the verb forms in the Propbank:eie test set are
included in Tables 2 and 3. Column three shows the valueBr@t) estimated
from Propbank; the following two columns show the prediei®f the Gigaword
model, the squared errors for that prediction, and analegaoumbers for the Web
model in the last two columns.

Among the 60 verb forms in the test set, the Gigaword regvassiee has
squared errors larger than 0.25 for 10 verb forms. The cporeding Web model
has squared errors above 0.25 for 8 verb forms.
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Figure 8: Results for Web regression tree

In some cases where the models disagree with the Propbanikdigold stan-
dard they are not necessarily wrong. For example both thesspn tree models
give a highPr(promised) based on occurrences of strings sucta$300 apiece
there promised to be a tremendous profit in the thivigch seem genuine raising
usages. However, all the usespsdbmised tdn Propbank are classified as control,
which results in a goldPr (promised) = 0.

In our experiments we did not group all the inflected forms a¢reverb to-
gether — rather we treat each verb-form as a separate exafiptemeans that we
have more training and test examples; but also that thefewss frequency counts
for each individual example. Grouping the verb forms togetimight change our
numbers somewhat but we do not expect this effect to be large.

6 Discussion

The experiments show that using pattern counts from largeoca can be used to
assess how likely a verb form is to appear in raising vs. cbewnstructions. We
evaluated two simple models and showed that they performhrbatter than the
baseline.



Table 2: Regression tree results on test set - part 1

Form Complement| Gold Pz || Giga | Giga SE|| Web | Web SE
afford TO 0 0.126| 0.0159| 0.041| 0.0017
agreed | TO 0 0.126| 0.0159| 0.041| 0.0017
aims TO 0 0.126| 0.0159| 0.041| 0.0017
appeared TO 1 0.919| 0.0065| 0.756| 0.0594
attempt | TO 0 0.126| 0.0159| 0.041| 0.0017
began TO 0.609 0.919| 0.0966| 0.756| 0.0218
begin TO 1 0.126| 0.7634| 0.756| 0.0594
came TO 1 0.919| 0.0065| 0.756| 0.0594
chose TO 0 0.126| 0.0159| 0.041| 0.0017
decide | TO 0 0.126| 0.0159| 0.041| 0.0017
decline | TO 0 0.126| 0.0159| 0.041| 0.0017
declined | TO 0 0.126| 0.0159| 0.041| 0.0017
declines | TO 0 0.126| 0.0159| 0.041| 0.0017
expected| TO 0 0.126| 0.0159| 0.041| 0.0017
failed TO 1 0.126| 0.7634| 0.756| 0.0594
get TO 0.667 0.919| 0.0639| 0.756| 0.0080
happen | TO 1 0.919| 0.0065| 0.756| 0.0594
helped | TO 0 0.126| 0.0159| 0.041| 0.0017
hesitate | TO 0 0.126| 0.0159| 0.041| 0.0017
hope TO 0 0.126| 0.0159| 0.041| 0.0017
hoped TO 0 0.126| 0.0159| 0.041| 0.0017
include | VBG 1 0.126| 0.7634| 0.041| 0.9193
intend TO 0 0.126| 0.0159| 0.041| 0.0017
intended | TO 0 0.126| 0.0159| 0.041| 0.0017
intends | TO 0 0.919| 0.8454| 0.041| 0.0017
like TO 0 0.126| 0.0159| 0.041| 0.0017
likes TO 0 0.126| 0.0159| 0.041| 0.0017
moved | TO 0.2 0.126| 0.0054| 0.041| 0.0252
offer TO 0 0.126| 0.0159| 0.041| 0.0017




Table 3: Regression tree results on test set - part 2

Form Complement|| Gold Pz | Giga | Giga SE|| Web | Web SE
plan TO 0 0.126| 0.0159(] 0.041| 0.0017
planned | TO 0 0.126| 0.0159(] 0.041| 0.0017
prefer TO 0 0.126| 0.0159| 0.041| 0.0017
prepared | TO 0 0.126| 0.0159(] 0.041| 0.0017
promised | TO 0 0.919| 0.8454| 0.756| 0.5718
promises | TO 0.111 0.919| 0.6534| 0.756| 0.4161
proposed | TO 0 0.126| 0.0159| 0.041| 0.0017
prove TO 1 0.126| 0.7634| 0.041| 0.9193
refuse TO 0 0.126| 0.0159| 0.041| 0.0017
remains | TO 1 0.919| 0.0065(| 0.756| 0.0594
said TO 1 0.126| 0.7634| 0.041| 0.9193
scrambled| TO 0 0.126| 0.0159(| 0.756| 0.5718
seeks TO 0 0.126| 0.0159(] 0.041| 0.0017
seemed | TO 1 0.919| 0.0065| 0.756| 0.0594
seems TO 1 0.919| 0.0065(| 0.756| 0.0594
serve TO 0 0.126| 0.0159|| 0.041| 0.0017
served TO 0 0.126| 0.0159(] 0.041| 0.0017
start TO 0.667 0.126| 0.2920| 0.756| 0.0080
started TO 0.778 0.919| 0.0201| 0.756| 0.0005
stood TO 1 0.126| 0.7634| 0.041| 0.9193
struggles | TO 0 0.126| 0.0159(] 0.041| 0.0017
tend TO 1 0.919| 0.0065| 0.756| 0.0594
threatens | TO 0 0.126| 0.0159(| 0.756| 0.5718
tries TO 0 0.126| 0.0159(] 0.041| 0.0017
turnout | TO 1 0.919| 0.0065| 0.756| 0.0594
turnsout | TO 1 0.919| 0.0065(| 0.756| 0.0594
vote TO 0 0.126| 0.0159| 0.041| 0.0017
voted TO 0 0.126| 0.0159(] 0.041| 0.0017
want TO 0 0.126| 0.0159| 0.041| 0.0017
wish TO 0 0.126| 0.0159(] 0.041| 0.0017
worked TO 0 0.126| 0.0159| 0.041| 0.0017




It also seems that for this task it is beneficial to use the mawder but also
noisier Web corpus rather than the relatively small and rcl€&gaword. The
method we used is to a certain extent robust to noise and kefrefin the sheer
guantity of data available on the web.

Similar methodology might be useful for detecting otheidak semantic dis-
tinctions: it could be used whenever a test employed to makeiktically inter-
esting distinctions can be reduced to a pattern search imamotated corpus.
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