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Learning Words

e How children learn the meaning of words?

doggy is playing with a
frisbee




Cross-situational Learning:
Using Co-occurrence Statistics

doggy is playing
with a frisbee




Cross-situational Learning:
Using Co-occurrence Statistics

doggy is playing
with a frisbee

She is throwing
he frisbee /
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Syntactic Bootstrapping:
Using Sentential Context

doggy is playing with a frisbee
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Syntactic Bootstrapping:
Using Sentential Context

doggy is playing with a frisbee

He is playing with a matchbox

Sara is cutting with a knife

lan is washing with a soapbar
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Main Questions

e How can these two mechanisms be integrated into a
unified model of word learning?



Main Questions

e How can these two mechanisms be integrated into a
unified model of word learning?

e \What is the origin and onset of syntactic bootstrapping?



Modeling of Cross-situational Word Learning

doggy is

playing with a frisbee
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Cross-situational Learning [Fazly et al. 2010]

® For every new pair of scene and utterance, (Uttr'”), Sen™)

1. Alignment: use previously learned meaning associations to align
each word in utterance with each meaning element from the scene

2. Update: use these alignments to update the probabilistic
associations between a word and its meaning elements
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Cross-situational Learning [Fazly et al. 2010]

® For every new pair of scene and utterance, (Uttr'”), Sen™)

1. Alignment: use previously learned meaning associations to align
each word in utterance with each meaning element from the scene

Uttr(t) Joe happily eating an

apple

Scn(t> joe quickly eat a big red apple hand

2. Update: use these alignments to update the probabilistic
associations between a word and its meaning elements
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Cross-situational Learning [Fazly et al. 2010]

® For every new pair of scene and utterance, (Uttr'”), Sen™)

1. Alignment: use previously learned meaning associations to align
each word in utterance with each meaning element from the scene

Uttr(t) Joe happily eating an apple

(t-1)

wy €Uttr )

Scn(t> joe quickly eat a big red apple hand

2. Update: use these alignments to update the probabilistic
associations between a word and its meaning elements
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Cross-situational Learning [Fazly et al. 2010]

® For every new pair of scene and utterance, (Uttr'”), Sen™)

1. Alignment: use previously learned meaning associations to align
each word in utterance with each meaning element from the scene

Uttr®

Sen®)

eat

eating

big

an

red

apple

apple

hand

pU = (f|w)
> pUTI(f k)

wy €Uttr )

a(wlf, Uttr™) =

2. Update: use these alignments to update the probabilistic
associations between a word and its meaning elements
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Adding Evidence from Sentential Context

doggy is

_playing with a frisbee
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Lexical Categories as a Source for
“Shallow” Syntactic Bootstrapping



Lexical Categories as a Source for
“Shallow” Syntactic Bootstrapping

e Aligning words and meaning elements: combine cross-
situational evidence with lexical categories

Joe happily eating an apple




Lexical Categories as a Source for
“Shallow” Syntactic Bootstrapping

e Aligning words and meaning elements: combine cross-
situational evidence with lexical categories

Cross-situational Meaning Associated
Word Meaning w. Lexical Category
P(flw) P(fC)
J J
t D (f lw) t p" =Y (flcat(w))
ay (w|f, Uttr)) = 4 (wl|f, Uttr() =
! TS S el TS D (featun)
wi €Uttr(H) wi €Uttr®)




Lexical Categories as a Source for
“Shallow” Syntactic Bootstrapping

e Aligning words and meaning elements: combine cross-

situational evidence with lexical categories

Cross-situational Meaning Associated
Word Meaning w. Lexical Category
P(flw) P(fC)
J J
U (fw) ' p!*~ D (flcat(w))
ay (w|f, Uttr)) = 4 (wl|f, Uttr() =
! TS S el TS D (featun)
wi €Uttr(H) wi €Uttr®)

N S

a(w|f, Uttr')) = weight(w) - aw(w|f, Uttr®)
+ (1 — weight(w)) - ac(w|f, Uttr®)

weight(w) = freq(w)

- freg(w) +1
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Automatically Induced Categories

e [ atent Dirichlet Allocation-based model

® A hierarchical Bayesian model for inducing a topic structure
from a collection of documents

b ~ Dirichlet(8), kel K]
04 ~ Dirichlet(a), de (1, D]
Zn, ~ Categorical(6y), ng € [1, Ny

wy,, ~ Categorical(¢z, ), na € [1, Nqg.

d



Automatically Induced Categories

e [ atent Dirichlet Allocation-based model

® A hierarchical Bayesian model for inducing a topic structure
from a collection of documents

gbk ~ Dirichlet(ﬁ),
04 ~ Dirichlet(«),
Zn, ~ Categorical(6y),

Wn,

d

~ Categorical(¢z, ),

topics
documents

words

11



Automatically Induced Categories

e Chrupala (2011) reinterpretation of LDA:
® Word types correspond to documents

® Context words correspond to words in documents

word classes

¢ ~ Dirichlet (), kel
04 ~ Dirichlet(a), de |
zn, ~ Categorical(6y), ng € |
~ Categorical(¢y, ), ngq € [1, Ny,

word types

context features

Wn, 4
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Automatically Induced Categories

e Chrupala (2011) reinterpretation of LDA:

® Word types correspond to documents

® Context words correspond to words in documents

word classes

by, ~ Dirichlet(), ke
04 ~ Dirichlet(«), de |

@ Categorical(6,), ng € |

~ Categorlcal(qbzn ), maq € [1,Ng

word types

context features

class membership of
word d given
context Nd
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Child-directed

Corpus <ultterance>

<utterance> <utterance,scene>
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Input Data

® A sample input item:

Utterance:
Scene:

!
1

mommy, ate, broccoli }
ANIMATE, HUMAN, ...,

CONSUMPTION, ACTION, ...
BROCCOLI, VEGETABLE, ...

PLATE, OBJECT, ... }

15



Input Data

® A sample input item:

Utterance: { mommy, ate, broccoli }

Scene: { ANIMATE, HUMAN, ...,
CONSUMPTION, ACTION, ...
BROCCOLI, VEGETABLE, ...
PLATE, OBJECT, ... }

e Child-adult interaction data from CHILDES [MacWhinney’95]
® Manchester corpus [Theakston et al./01]

® Pearl-Sprouse corpus [Pear|l & Sprouse’13]

15



Input Data

e Child-directed utterances from each corpus

that is an apple
do you like apple?
do you want to give dolly an apple?

can teddy bear give penguin a kiss?

16



Input Data

® ... paired with meaning primitives extracted from WordNet

that is an apple
do you like apple?
do you want to give dolly an apple?

can teddy bear give penguin a kiss?

definite, be, edible, fruit, ...

do, person, you, desire, edible, fruit, ...

do, person, you, want, location, artifact, ...

artifact, object, teddy, animal, bear, ...

17



Input Data

e ... and subsequent primitive sets combined to simulate

referential uncertainty:

that is an apple

definite, be, edible, fruit, ...

do, person, you, desire, edible, fruit, ...

do you want to give dolly an apple?

do, person, you, want, location, artifact, ...

artifact, object, teddy, animal, bear, ...

18




Automatically Induced Categories
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Automatically Induced Categories
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= Categories significantly improve word learning performance

= | DA-based categories are comparable to manually-
annotated, “gold” POS categories



Guessing Meaning from Context

I ate zag for luncu
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Guessing Meaning from Context

o [ ate zag for lunch./

-2 -1 0 1 2

I ate | zag | for lunch




Guessing Meaning from Context

o [ ate zag for lunch./
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Guessing Meaning from Context

. [ ate zag for lunch./

entity

object
substance

matter

food
edible

20



Accuracy of Guessed Meaning
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An Example

do you want to F@
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An Example

| cerew [0 reoyan
| 1eos [] redyaapajeayn
| rAmusieaisAyd [] Hezopjng
[ 2eloum [ zelouym
| ryoeas [] 1eusep
| ruonenus ] 1o
| veres [] wwelgo
[ zeinqune ] 1buy
< [ 1Buy ] zeinqupe
D [ 9uonoeinsqe [] truonenys
[ 1eney [] vews
L [ ] eoew [ ] tAmuspeoisiyd
[ ] tAeaqiensieaso [ ] Bugibuing
[ ] 1em [ ] rwswuebio
[ woelgo ] teney
[ ] thnue [_] 9uonoensqe
[ ] 1Bupbuinyg ] thnue
[ ] rwswebio [ Husbepesneos
| tusbejesneds [ tuosied
| tuossed [— T
[ T T T 1 [ T T T 1
& 2 2 8 8 & 2 2 3 8
| Lexel [] Less
| e ] rwuem
| | ainjeayjealbojol [] tuoneoo
[ +Anuereoisiyd [] cuoibel
[ cerewsy [] ruonenys
O tAmue [] vewes
[] 2erew [] wnd
[] zeinqune ] EINERIET!
0p) ] 1buwy ] Amusieoisyd
O [] tuonenus [] heb
[] vewes [] leney
A [] guonoensqe [ ] Lob
[ HAeqiensreasn [] guonoesnsqge
[ ] covew [ ] Buiyibuiy
] Lemm [ ] rwsiuebio
[ ] 1bupbuinyg [ wwelgo
[ ] ‘twswebio [ ] Husbeesneo
[ ] wwelgo [ ] tuosied
| twusbejesned [ ] zenow
] tuosied [ ] Hhmue
[ T T T 1 [ T T T 1
8 = 2 8 8 8 © 2 8 38

do vou want to read a book?

you

want

22



Summary

e Syntactic information can be seamlessly integrated into
cross-situational learning

® Appropriate categories can improve the overall word
learning performance

e Automatically induced, data-driven categories are as
effective as the manually-annotated POS categories
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Class Granularity
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Impact of Word Frequency

Error (1 - MAP)
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Automatically Induced Categories

® An incremental version of the collapsed Gibbs sampler:

fort =1 — o0 do
fori=1— |;do
sample Lt P(Zt,-‘zt,'—1 , Wi, dti)

: Z;., Wy, Z;., 0.
increment n,” " and n,""

e Only conditioned on previous word tokens:

( Zt,dp Zt, Wi

N+ a) x (ne 4 B)

P(Zt‘Zt_1 W; dt) X ;
o S
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