

On the Origin of Shallow Syntactic Bootstrapping

Afra Alishahi & Grzegorz Chrupała January 17, 2014

Learning Words

• How children learn the meaning of words?

Cross-situational Learning: Using Co-occurrence Statistics

Cross-situational Learning: Using Co-occurrence Statistics

She is throwing the frisbee

Syntactic Bootstrapping: Using Sentential Context

doggy is playing with a *frisbee*

Syntactic Bootstrapping: Using Sentential Context

doggy is playing with a *frisbee*

He is playing with a matchbox

Sara is cutting with a knife

Ian is washing with a soapbar

Syntactic Bootstrapping: Using Sentential Context

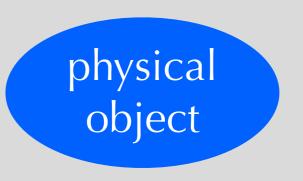
doggy is playing with a *frisbee*

He is playing with a matchbox

Sara is cutting with a knife

Ian is washing with a soapbar

X is DOing with a Y



Main Questions

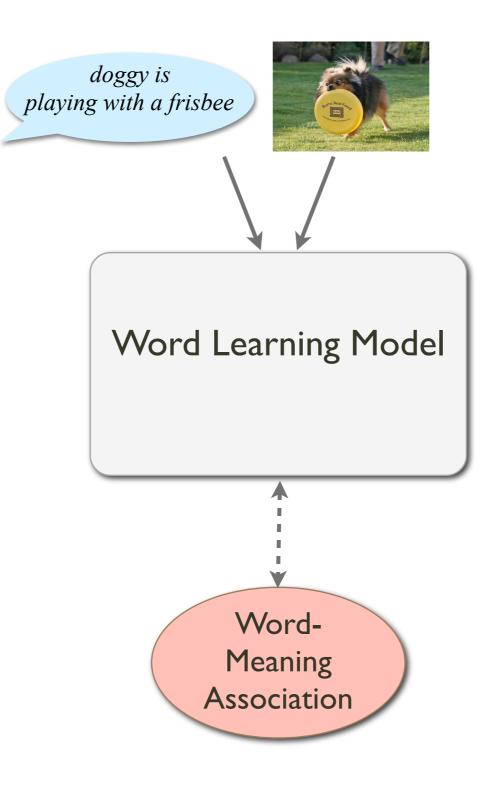
• How can these two mechanisms be integrated into a unified model of word learning?

Main Questions

• How can these two mechanisms be integrated into a unified model of word learning?

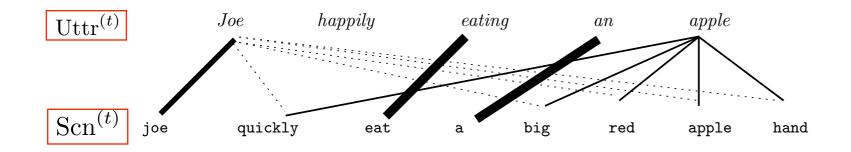
• What is the origin and onset of syntactic bootstrapping?

Modeling of Cross-situational Word Learning

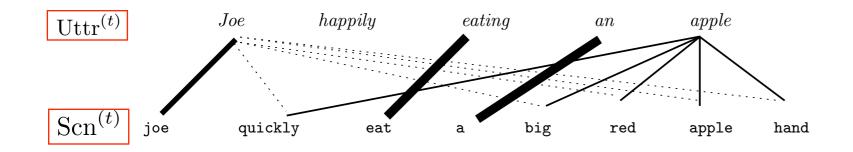


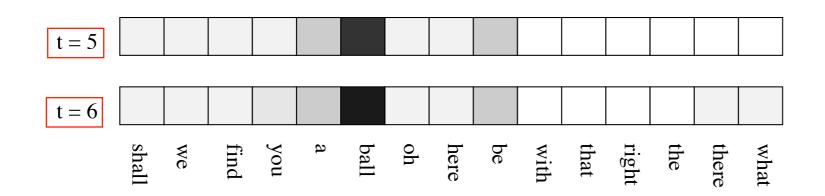
- For every new pair of scene and utterance, $(Uttr^{(t)}, Scn^{(t)})$
 - 1. Alignment: use previously learned meaning associations to align each word in utterance with each meaning element from the scene

- For every new pair of scene and utterance, $(Uttr^{(t)}, Scn^{(t)})$
 - 1. Alignment: use previously learned meaning associations to align each word in utterance with each meaning element from the scene

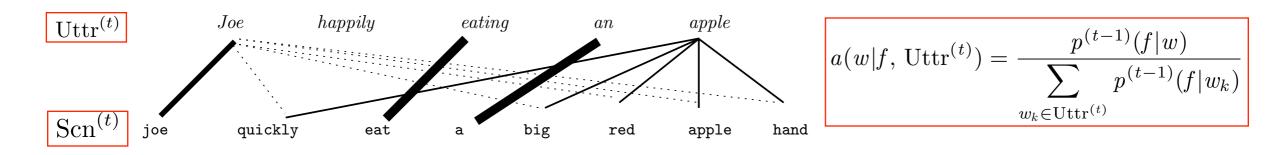


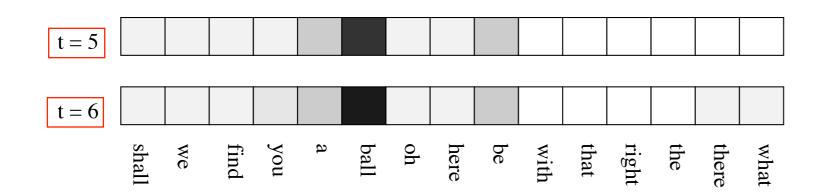
- For every new pair of scene and utterance, $(Uttr^{(t)}, Scn^{(t)})$
 - 1. Alignment: use previously learned meaning associations to align each word in utterance with each meaning element from the scene



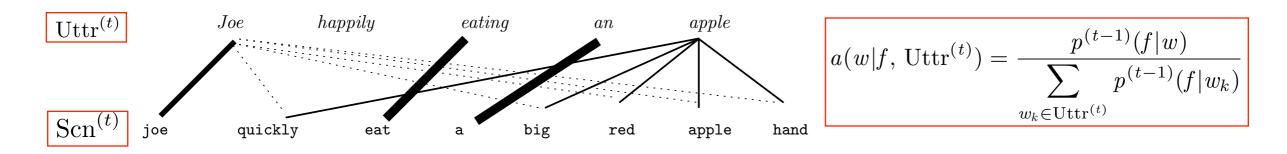


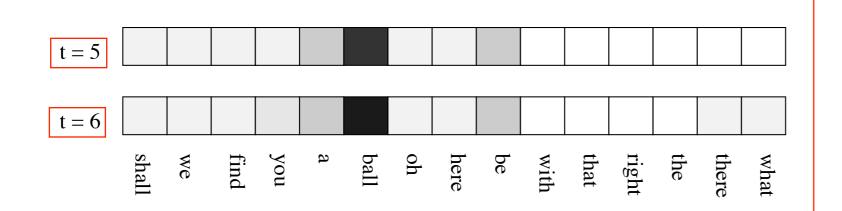
- For every new pair of scene and utterance, $(Uttr^{(t)}, Scn^{(t)})$
 - 1. Alignment: use previously learned meaning associations to align each word in utterance with each meaning element from the scene





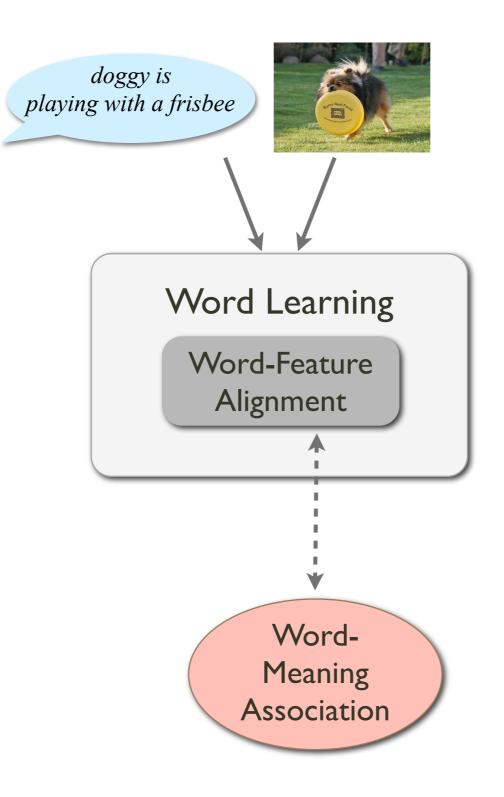
- For every new pair of scene and utterance, $(Uttr^{(t)}, Scn^{(t)})$
 - 1. Alignment: use previously learned meaning associations to align each word in utterance with each meaning element from the scene



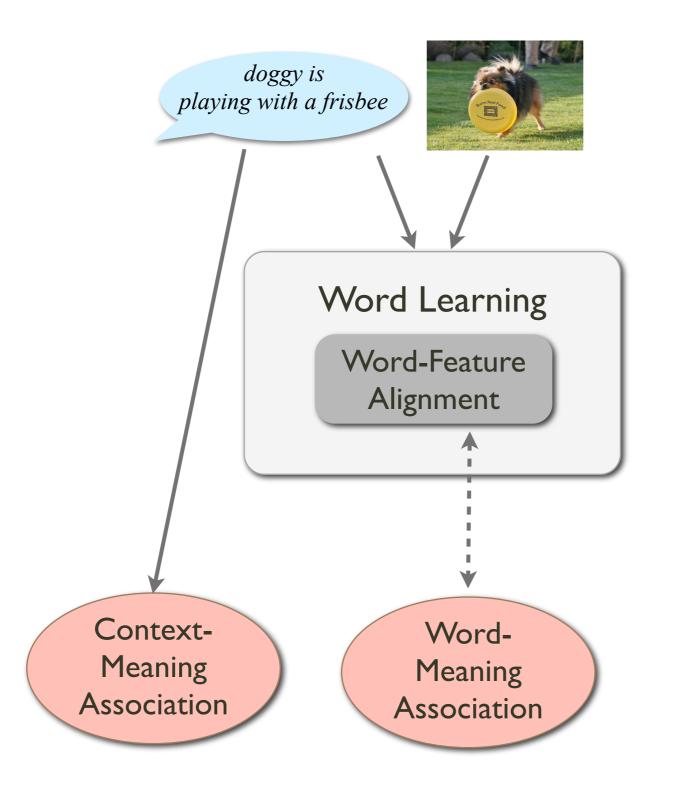


$$\operatorname{assoc}^{(t)}(w, f) = \operatorname{assoc}^{(t-1)}(w, f) + a(w|f, \operatorname{Uttr}^{(t)})$$
$$p^{(t)}(f|w) = \frac{\operatorname{assoc}^{(t)}(f, w)}{\sum_{f_j \in \mathcal{F}} \operatorname{assoc}^{(t)}(f_j, w)}$$

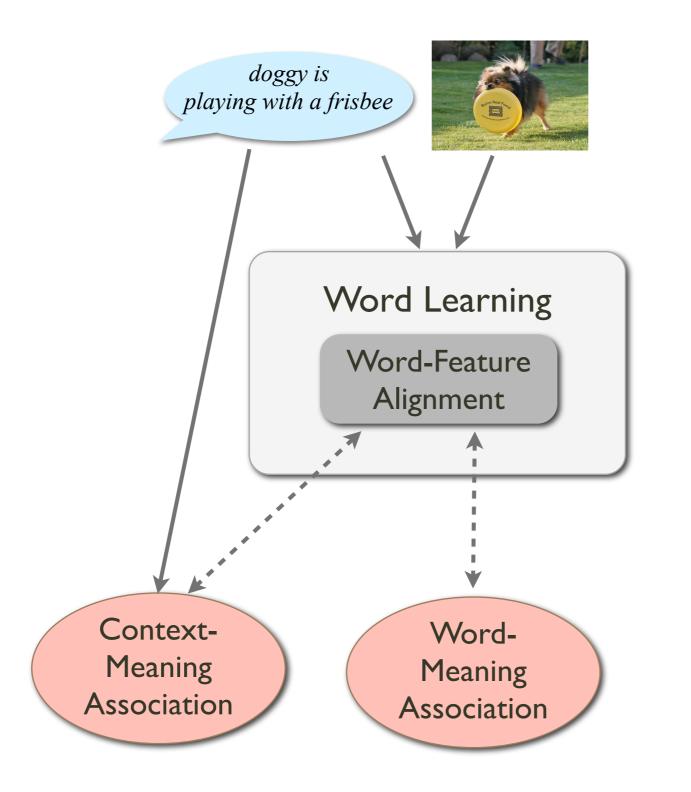
Adding Evidence from Sentential Context



Adding Evidence from Sentential Context



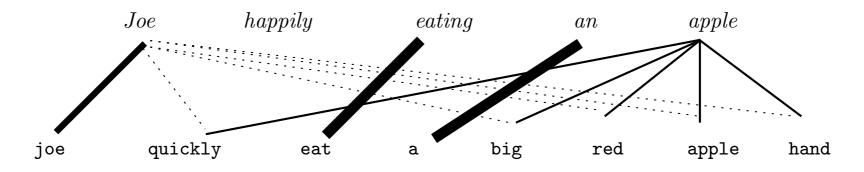
Adding Evidence from Sentential Context



Lexical Categories as a Source for "Shallow" Syntactic Bootstrapping

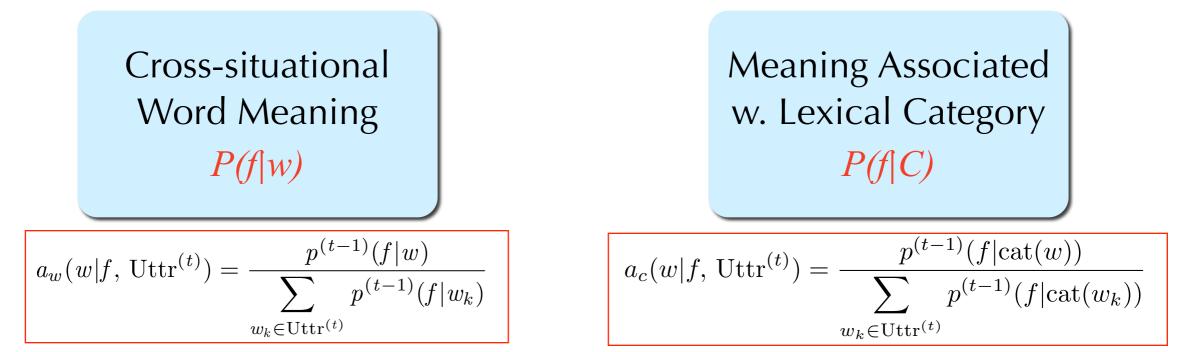
Lexical Categories as a Source for "Shallow" Syntactic Bootstrapping

• Aligning words and meaning elements: combine crosssituational evidence with lexical categories



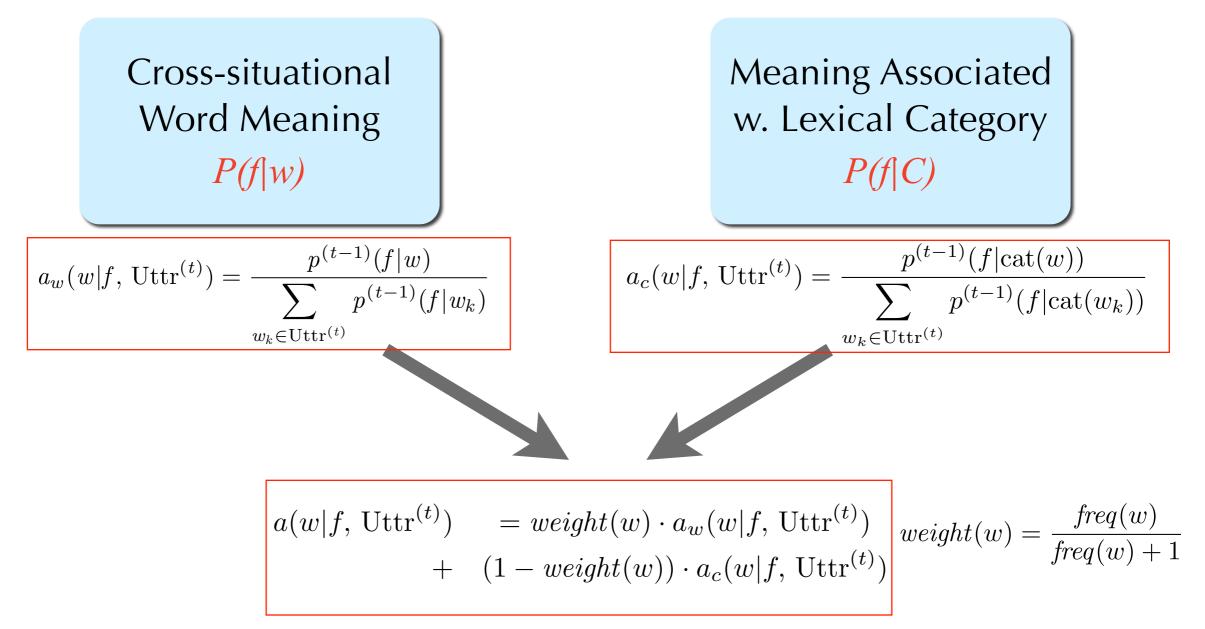
Lexical Categories as a Source for "Shallow" Syntactic Bootstrapping

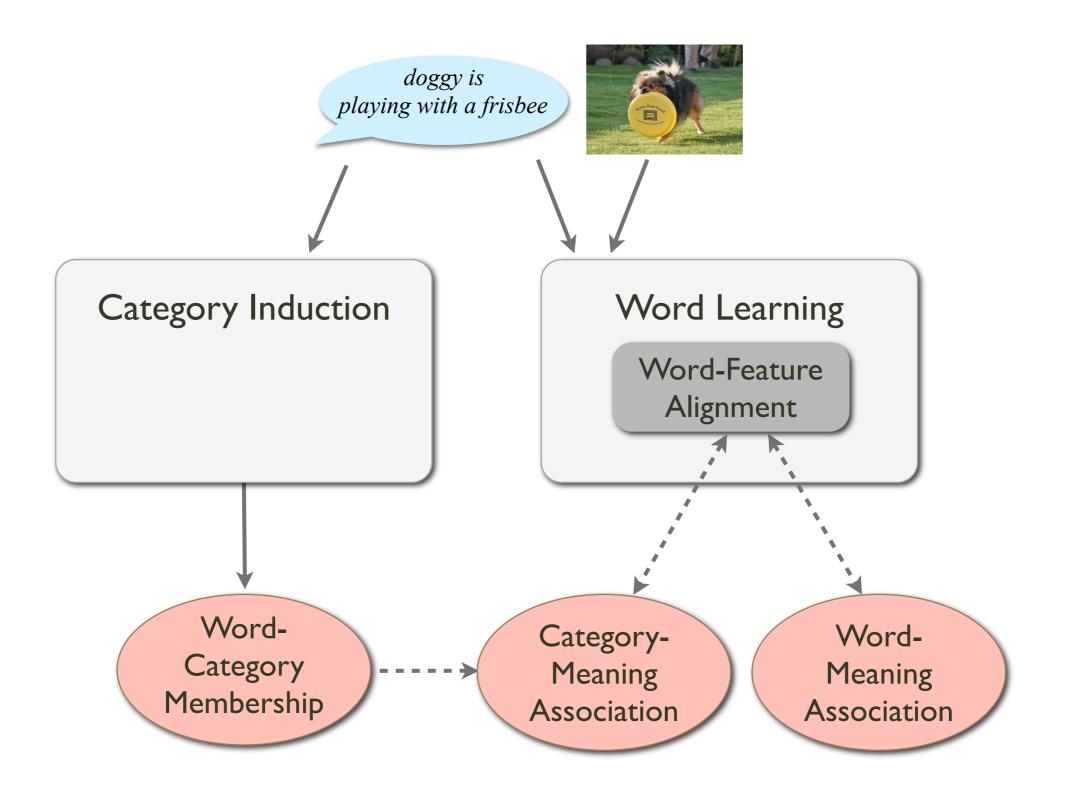
• Aligning words and meaning elements: combine crosssituational evidence with lexical categories



Lexical Categories as a Source for "Shallow" Syntactic Bootstrapping

• Aligning words and meaning elements: combine crosssituational evidence with lexical categories





- Latent Dirichlet Allocation-based model
 - A hierarchical Bayesian model for inducing a topic structure from a collection of documents

$$\begin{split} \phi_k &\sim \text{Dirichlet}(\beta), & k \in [1, K] \\ \theta_d &\sim \text{Dirichlet}(\alpha), & d \in [1, D] \\ z_{n_d} &\sim \text{Categorical}(\theta_d), & n_d \in [1, N_d] \\ w_{n_d} &\sim \text{Categorical}(\phi_{z_{n_d}}), & n_d \in [1, N_d] \end{split}$$

- Latent Dirichlet Allocation-based model
 - A hierarchical Bayesian model for inducing a topic structure from a collection of documents

 $\begin{array}{ll} \phi_k \sim \operatorname{Dirichlet}(\beta), & k \in \llbracket (,K] & \rightarrow topics \\ \theta_d \sim \operatorname{Dirichlet}(\alpha), & d \in \llbracket (,D] & \rightarrow documents \\ z_{n_d} \sim \operatorname{Categorical}(\theta_d), & n_d \in \llbracket (,N_d] & \rightarrow words \\ w_{n_d} \sim \operatorname{Categorical}(\phi_{z_{n_d}}), & n_d \in \llbracket 1,N_d \end{bmatrix}$

• Chrupala (2011) reinterpretation of LDA:

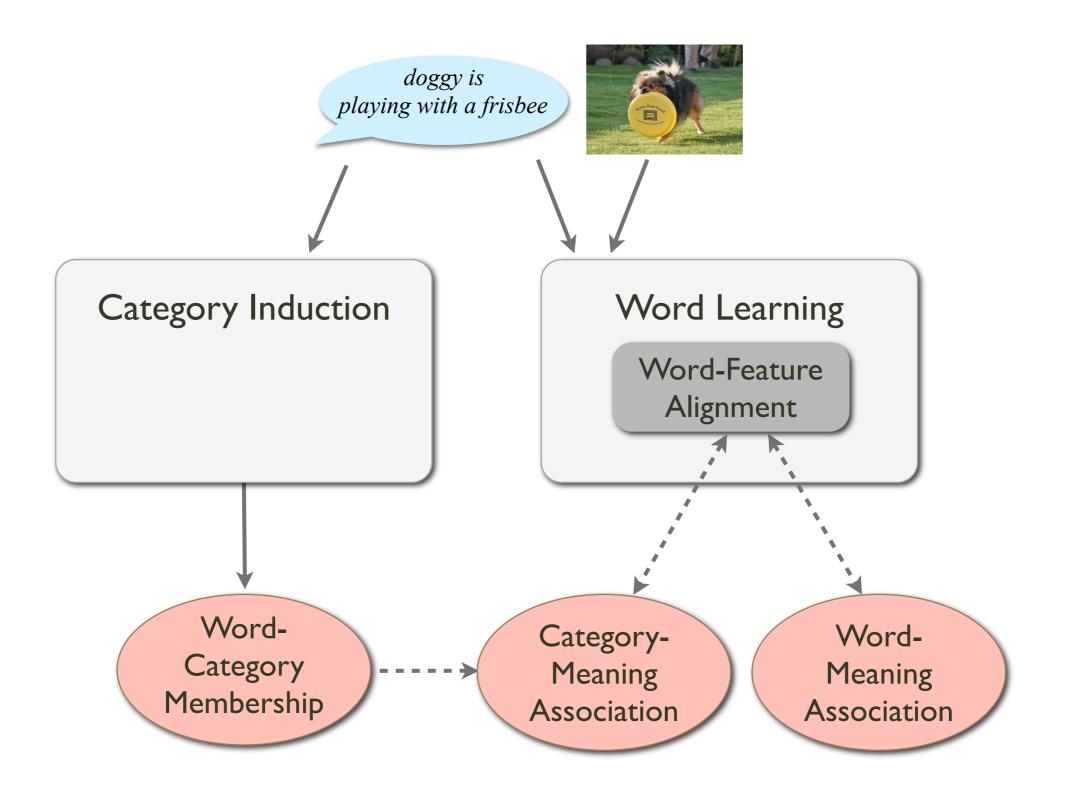
- Word types correspond to documents
- Context words correspond to words in documents

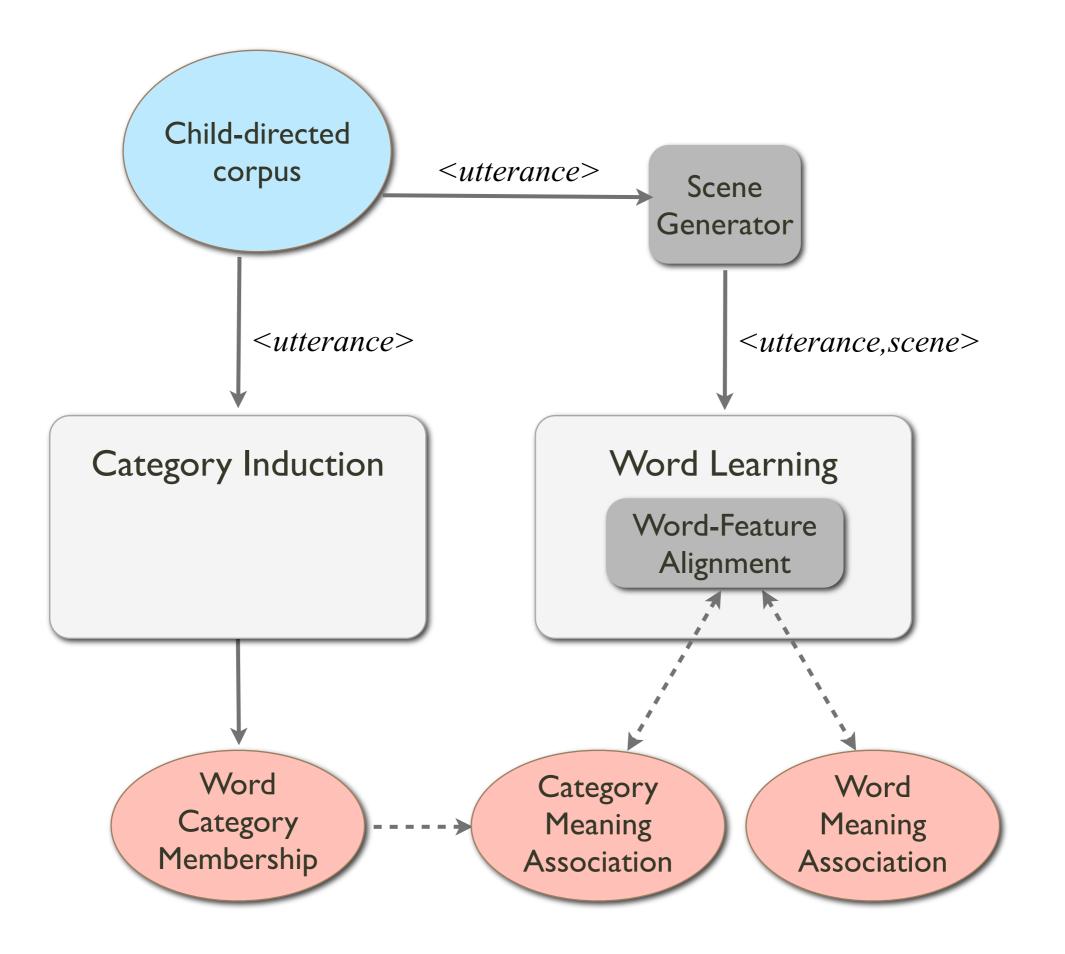
 $\begin{array}{ll} \phi_k \sim \operatorname{Dirichlet}(\beta), & k \in \llbracket, K \rrbracket \rightarrow \textit{word classes} \\ \theta_d \sim \operatorname{Dirichlet}(\alpha), & d \in \llbracket, D \rrbracket \rightarrow \textit{word types} \\ z_{n_d} \sim \operatorname{Categorical}(\theta_d), & n_d \in \llbracket, N_d \rrbracket \rightarrow \textit{context features} \\ w_{n_d} \sim \operatorname{Categorical}(\phi_{z_{n_d}}), & n_d \in \llbracket, N_d \rrbracket \end{array}$

• Chrupala (2011) reinterpretation of LDA:

- Word types correspond to documents
- Context words correspond to words in documents

$$\begin{array}{ccc} \phi_k \sim \operatorname{Dirichlet}(\beta), & k \in \llbracket, K \rrbracket \rightarrow \textit{word classes} \\ \theta_d \sim \operatorname{Dirichlet}(\alpha), & d \in \llbracket, D \rrbracket \rightarrow \textit{word types} \\ \hline z_{n_d} \sim \operatorname{Categorical}(\theta_d), & n_d \in \llbracket, N_d \rrbracket \rightarrow \textit{context features} \\ w_{n_d} \sim \operatorname{Categorical}(\phi_{z_{n_d}}), & n_d \in \llbracket, N_d \rrbracket \\ \hline \textit{class membership of} \\ \textit{word d given} \\ \textit{context Nd} \end{array}$$





• A sample input item:

Utterance:	{	mommy, ate, broccoli }
Scene:	{	ANIMATE, HUMAN,,
		CONSUMPTION, ACTION,
		BROCCOLI, VEGETABLE,
		PLATE, OBJECT, $\}$

• A sample input item:

Utterance:	{	mommy, ate, broccoli }
Scene:	{	ANIMATE, HUMAN,,
		CONSUMPTION, ACTION,
		BROCCOLI, VEGETABLE,
		PLATE, OBJECT, }

- Child-adult interaction data from CHILDES [MacWhinney'95]
 - Manchester corpus [Theakston et al.'01]
 - Pearl-Sprouse corpus [Pearl & Sprouse'13]

• Child-directed utterances from each corpus

that is an apple

do you like apple?

do you want to give dolly an apple?

can teddy bear give penguin a kiss?

• • •

• ... paired with meaning primitives extracted from WordNet

• • •

that is an apple

. . .

do you like apple?

definite, be, edible, fruit, ...

do, person, you, desire, edible, fruit, ...

do you want to give dolly an apple?

can teddy bear give penguin a kiss?

do, person, you, want, location, artifact, ...

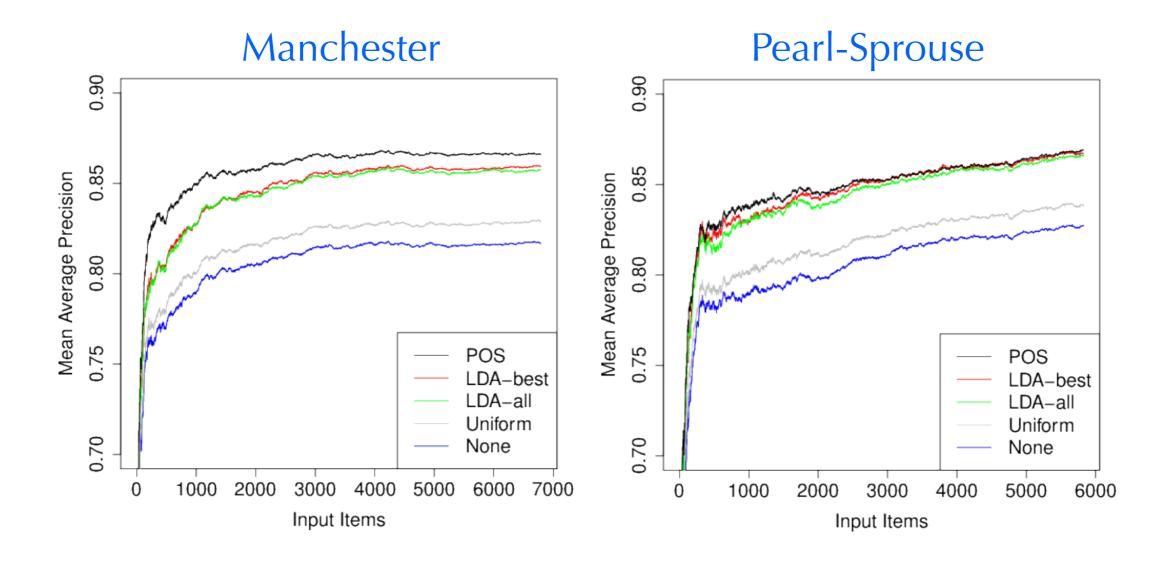
artifact, object, teddy, animal, bear, ...

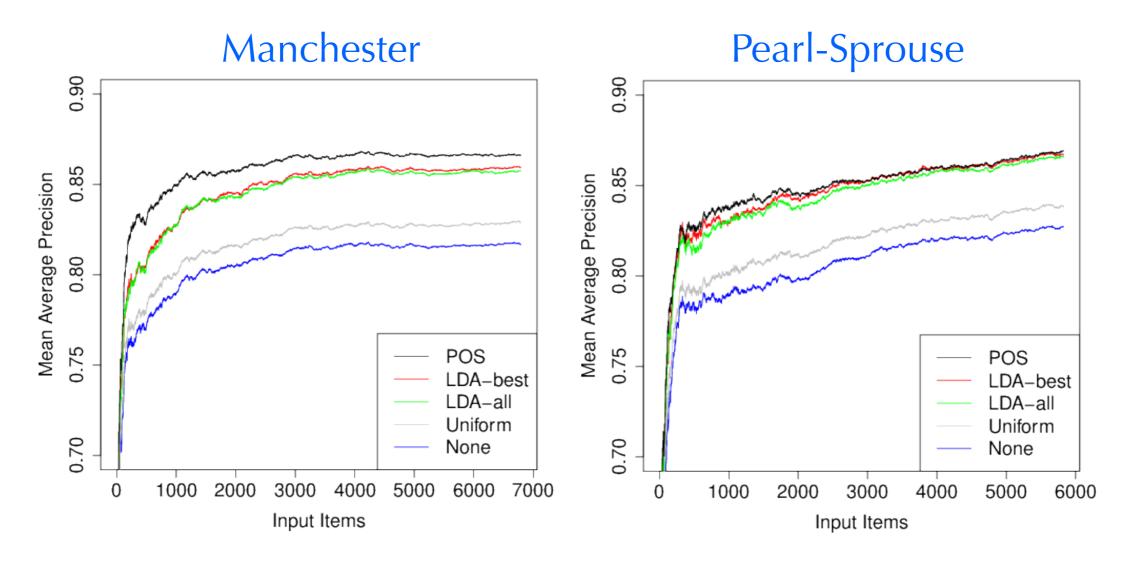
• ... and subsequent primitive sets combined to simulate referential uncertainty:

that is an apple	definite, be, edible, fruit,
do you like apple?	do, person, you, desire, edible, fruit,
do you want to give dolly an apple?	do, person, you, want, location, artifact,
can teddy bear give penguin a kiss?	artifact, object, teddy, animal, bear,

• • •

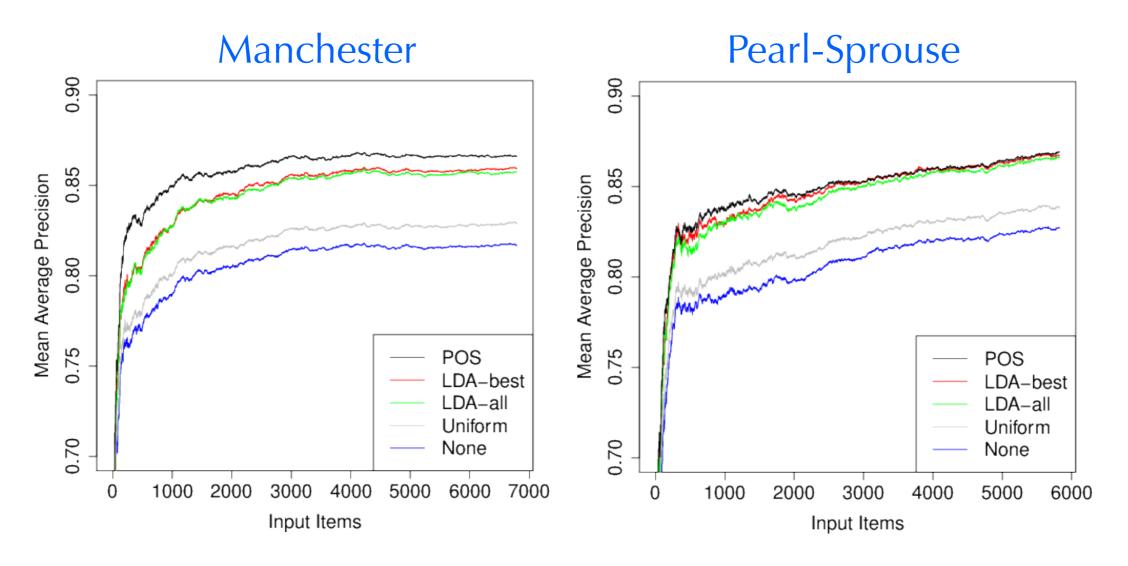
. . .





Categories significantly improve word learning performance

Automatically Induced Categories



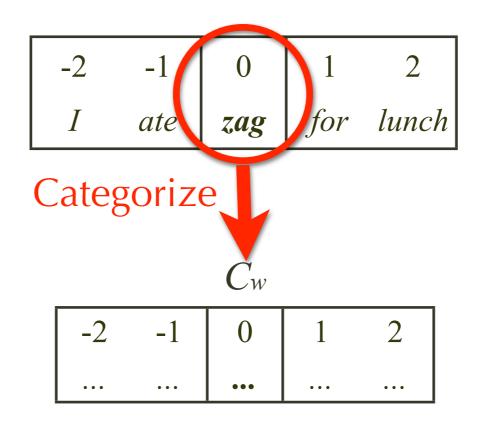
- Categories significantly improve word learning performance
- LDA-based categories are comparable to manuallyannotated, "gold" POS categories

I ate zag for lunch.

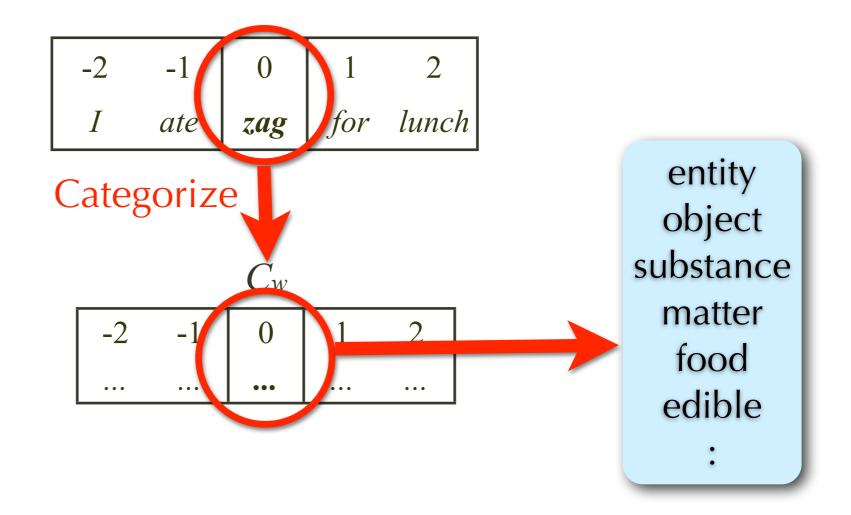
I ate zag for lunch.

-2	-1	0	1	2
Ι	ate	zag	for	lunch

I ate zag for lunch.



I ate zag for lunch.



Accuracy of Guessed Meaning

0.5 0.5 0.4 0.4 Average Precision Average Precision 0.3 0.3 0.2 0.2 POS POS LDA-best LDA-best 0.1 0.1 LDA-all LDA-all Uniform Uniform 0.0 None None 0.0 2000 3000 4000 5000 6000 7000 1000 0 1000 2000 3000 4000 5000 6000 0 Input Items Input Items

Manchester

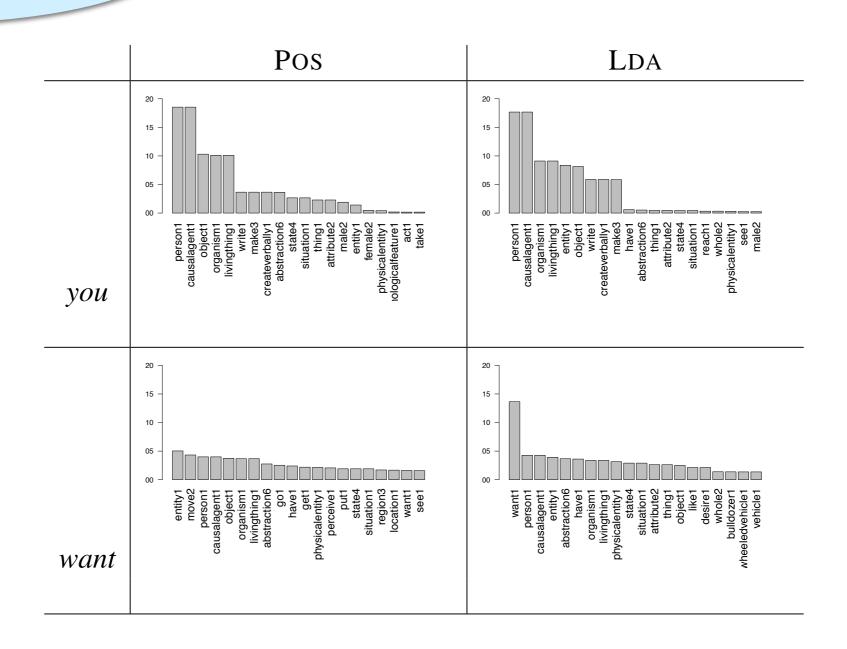
Pearl-Sprouse

An Example

do <u>you</u> <u>want</u> to read a book?

An Example

do <u>you</u> want to read a book?



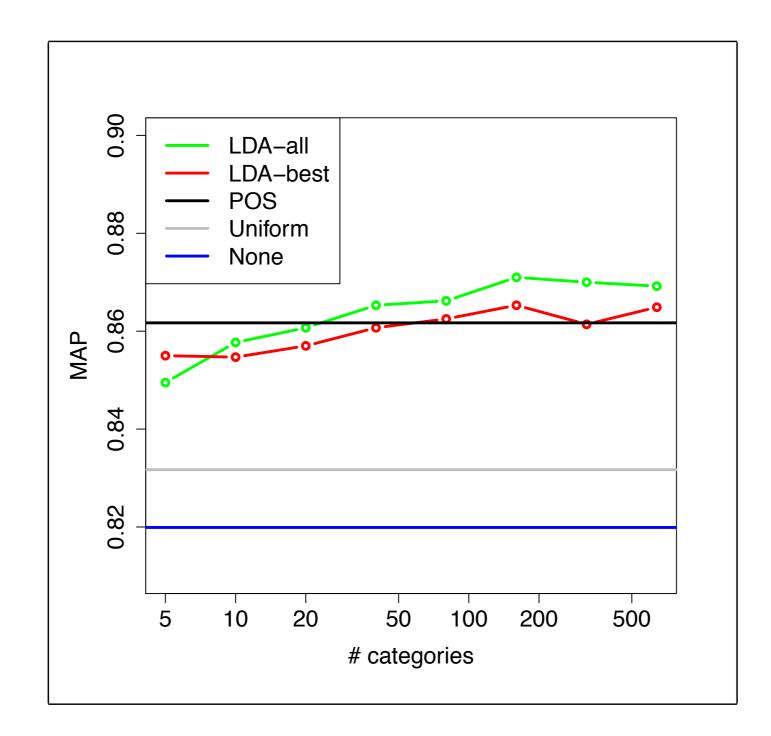
Summary

• Syntactic information can be seamlessly integrated into cross-situational learning

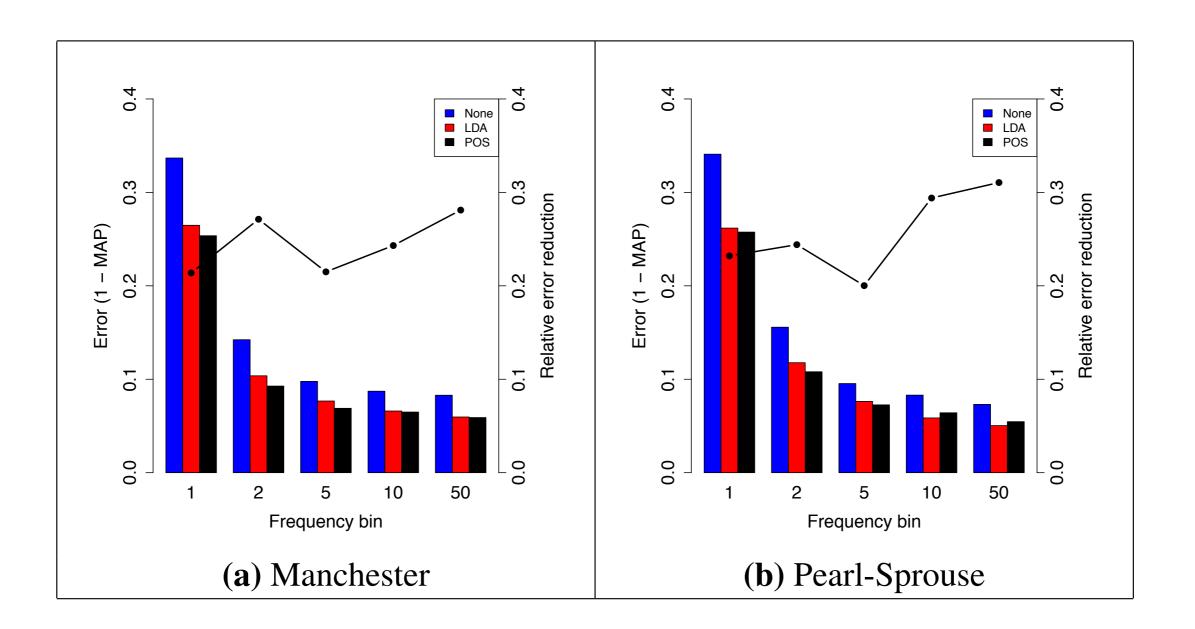
• Appropriate categories can improve the overall word learning performance

• Automatically induced, data-driven categories are as effective as the manually-annotated POS categories

Class Granularity



Impact of Word Frequency



Automatically Induced Categories

• An incremental version of the collapsed Gibbs sampler:

for
$$t = 1 \rightarrow \infty$$
 do
for $i = 1 \rightarrow I_t$ do
sample $z_{t_i} \sim P(z_{t_i} | \mathbf{z}_{t_i-1}, \mathbf{w}_{t_i}, \mathbf{d}_{t_i})$
increment $n_t^{z_{t_i}, w_{t_i}}$ and $n_t^{z_{t_i}, d_{t_i}}$

• Only conditioned on previous word tokens:

$$P(z_t|\mathbf{z}_{t-1},\mathbf{w}_t,\mathbf{d}_t) \propto \frac{(n_{t-1}^{z_t,d_t}+\alpha) \times (n_{t-1}^{z_t,w_t}+\beta)}{\sum_{j=1}^{V_{t-1}} n_{t-1}^{z_t,w_j}+\beta}.$$