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Human category acquisition

Humans incrementally learn lexical categories from
exposure to language

I Children form robust lexical categories early on
[Gelman and Taylor, 1984, Kemp et al., 2005]

Distributional properties of words provide cues
about its category

I Children are sensitive to co-occurrence statistics
[Aslin et al., 1998]

I Child-directed speech provides contextual evidence for
learning categories [Redington et al., 1998, Mintz, 2002]
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Unsupervised category induction

Many unsupervised models use distributional
information to learn categories

I [Brown et al., 1992, Clark, 2003, Goldwater and Griffiths, 2007]

But most are not cognitively plausible
I process data in batch mode
I categorize word types instead of word tokens
I pre-define the number of categories
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Online category induction

A few online models of category induction are
proposed

I [Cartwright and Brent, 1997, Parisien et al., 2008]
I More cognitively motivated

But may require large amounts of training, and be
over-sensitive to context variation
We propose

I A simple algorithm which incrementally learns an
unbounded number of categories

I A task-based approach to evaluating human
categorization models
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Informativeness versus parsimony

A good categorization model partitions words into
discrete categories such that:

I The number and distribution of categories is as simple as
possible

I Categories are highly informative about their members

In other words trade-off parsimony against
informativeness (goodness-of-fit)
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Joint entropy criterion
Parsimony

H(Y ) = −
N∑
i=1

P (Y = yi) log2[P (Y = yi)] (1)

Informativeness

H(X|Y ) =
N∑
i=1

P (Y = yi)H(X|Y = yi) (2)

Joint entropy minimizes the sum of both

H(X, Y ) = H(Y ) + H(X|Y ) (3)
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Joint minimization for multiple variables

Optimize simultaneously for all features

M∑
j=1

H(Xj, Y ) =
M∑
j=1

[
H(Xj|Y ) + H(Y )

]
(4)

=
M∑
j=1

[
H(Xj|Y )

]
+ M ×H(Y )

Chrupala and Alishahi (UdS) Online Category Acquisition CoNLL 2010 10 / 35



Incremental updates

At point t find the best assignment Y = yi:

ŷ =

{
yN+1 if ∀yn[∆H t

yN+1
≤ ∆H t

yn
]

argminy∈{y}Ni=1
∆H t

y otherwise

(5)
where

∆H t
y =

M∑
j=1

[
H t

y(Xj, Y )−H t−1(Xj, Y )
]

(6)

H t(Xj, Y ) can be computed incrementally.
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Data

Manchester portion of CHILDES, mothers’ turns

Discard one-word sentences and punctuation

Data Set Sessions #Sentences #Words
Training 26–28 22, 491 125, 339
Development 29–30 15, 193 85, 361
Test 32–33 14, 940 84, 130
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Labeling with categories

∆H. Categories induced from the training set
Features: want to try them on

PoS. POS tags from the Manchester corpus

Words. Word types

Parisien. Categories induced by Bayesian model of
[Parisien et al., 2008] from the training set.
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Example clusters
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How to evaluate induced categories?

Against gold POS tags
I Arbitrary choice of granularity and/or criteria for

membership

Task based evaluation
I Different tasks may call for different category

representations

Proposal: evaluate on a number tasks, simulating
key aspects of human language processing
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Evaluation against POS labels
Variation of Information:
VI (X,X ′) = H(X) + H(X ′)− 2I(X,X ′)

Adjusted Rand Index
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Task-based evaluation

Word prediction
I Guess a missing word based on its sentential context

Semantic feature prediction
I Predict the semantic properties of a novel word based on

context

Grammaticality judgement
I Assess the syntactic well-formedness of a sentence based

on the category labels assigned to its words
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Word prediction

Human subjects are remarkably accurate at guessing
words from context, e.g. in Cloze Test:

Petroleum, or crude oil, is one of the world’s (1) —– natural
resources. Plastics, synthetic fibres, and (2) —– chemicals are
produced from petroleum. It is also used to make lubricants and
waxes. (3) —– , its most important use is as a fuel for heating, for
(4) – — electricity, and (5) —– for powering vehicles.
A. as important
B. most important
C. so importantly
D. less importantly

E. too important
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Word prediction

Reciprocal rank

want to put them on

y123

y123 make
take
put rank−1 = 1

3
get
sit
eat
let
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Word prediction: variants

∆Hmax

P (w|h) = P (w| argmax
i

R(yi|h)−1)

∆HΣ

P (w|h) =
N∑
i=1

P (w|yi)
R(yi|h)−1∑N
i=1 R(yi|h)−1
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Word prediction: Results
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Comparison to n-gram language models
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Predicting semantic properties
Children’s Sensitivity to Lexical Categories

• Gelman & Taylor’84: 2-year-olds treat names not followed by a 
determiner (e.g. “Zav”) as a proper name, and interpret them as 
individuals (e.g., the animal-like toy).

2

Look, this is Zav!
Point to Zav.

Children’s Sensitivity to Lexical Categories

• Gelman & Taylor’84: 2-year-olds treat names followed by a 
determiner (e.g. “the zav”) as a common name, and interpret them 
as category members (e.g., the block-like toy).

3

Look, this is a zav!
Point to the zav.

[Gelman and Taylor, 1984]: 2-year-olds treat words preceded by a

determiner (“the zav”) as common nouns, and interpret them as

category members (block-like toy).

Chrupala and Alishahi (UdS) Online Category Acquisition CoNLL 2010 24 / 35



Predicting semantic properties
Children’s Sensitivity to Lexical Categories

• Gelman & Taylor’84: 2-year-olds treat names not followed by a 
determiner (e.g. “Zav”) as a proper name, and interpret them as 
individuals (e.g., the animal-like toy).

2

Look, this is Zav!
Point to Zav.

[Gelman and Taylor, 1984]: 2-year-olds treat words not preceded by

a determiner (“Zav”) as proper nouns, and interpret them as

individuals (animal-like toy).

Chrupala and Alishahi (UdS) Online Category Acquisition CoNLL 2010 25 / 35



Semantic features from WordNet and
VerbNet

Semantic profile for each category is the multiset union
of the semantic sets of its members
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Semantic feature prediction task

I had cake for lunch

y123

AP


y123 entity

substance
matter
food
edible
...

,


cake
baked goods
food
solid
substance




AP(F,R) =

1

|R|

|F |∑
r=1

P (r)× 1R(Fr) (7)
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Predicting semantic properties: Results
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Grammaticality judgement
Both children and adults have a reliable concept of what is

grammatical [Theakston, 2004]:

“She gave the book me”
Is it ok, or is it a bit silly? Silly

“She gave me the book”
Is it ok, or is it a bit silly? OK
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Grammaticality task

score(y) =
n

min
i=1

P (yi|yi−2, yi−1)

want to put them on

y41 y21 y123 y2 y3
0.02 0.1 0.05 0.01 0.03 = 0.0100

want to them put on
y41 y21 y124 y4 y3

0.02 0.1 0.001 0.0005 0.005 = 0.0005

correct =

{
1 if score(yok) > score(y∗)

0 otherwise
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Grammaticality judgement: Results
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Summary of results

Gold Words Parisien ∆Hmax ∆HΣ

Pred 0.354 - 0.212 0.309 0.359
Sem 0.351 - 0.213 0.366 -
Gram 0.728 0.685 0.683 0.715 -
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Conclusion

Learning categories
I Categories can be learned from usage data incrementally
I A simple online information-theoretic approach works

well in this scenario

Evaluation
I Automatically induced categories can work better than

PoS tags in language tasks
I Evaluation of unsupervised category induction models

should not rely exclusively on gold POS labels

Future directions
I Compare the performance of the model to humans
I Develop a wider range of tasks
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Cluster evaluation metrics

Variation of information:
V I(X;Y ) = H(X) + H(Y )− 2I(X, Y )

Rand Index: R = a+b
a+b+c+d = a+b

(n
2)

Adjusted Rand Index:
AdjustedIndex = Index−ExpectedIndex

MaxIndex−ExpectedIndex
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