Efficient induction of probabilistic word classes with LDA

Grzegorz Chrupala

Saarland University

IJCNLP 2011
Word classes

Groups of words sharing syntax/semantics

Useful for generalization and abstraction
Word classes as features

Have been successfully used in:
- Named Entity recognition
- Syntactic parsing
- Sentence retrieval
Brown clustering

- Brown et al propose their algorithm in 1992
- Agglomerative, hard clustering algorithm
- Minimizes MI between adjacent classes
- Still most commonly used word class type
Brown’s weaknesses

1. Time complexity:

\[O(K^2V) \]
Brown’s weaknesses

1. Time complexity:

\[O(K^2V) \]

2. Hard clustering

- Each word form assigned to only one class
- Need separate classes for:
 - first name
 - last name
 - first name OR last name
 - last name OR city
Word class induction with LDA addresses both issues
LDA for topic modeling

- For each topic z draw ϕ_z from a Dirichlet
- For each document d
 - Draw a topic distribution θ_d from a Dirichlet
 - Repeat until generated all the words in d
 - Draw a topic z from θ_d
 - Draw a word w from the ϕ_z
Topic vs word classes

<table>
<thead>
<tr>
<th>Topics</th>
<th>→</th>
<th>Word classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documents</td>
<td>→</td>
<td>Word types</td>
</tr>
<tr>
<td>Words</td>
<td>→</td>
<td>Context features</td>
</tr>
</tbody>
</table>
Krzysztof argues that director edits and said Bledkowsk R Kieslowski R Kieslowski R Rutkowski R Sikorski R and L
Generative process

- For each class z draw ϕ_z from a Dirichlet
- For each word type d
 - Draw a class distribution θ_d from a Dirichlet
 - Repeat
 - Draw a word class z from θ_d
 - Draw a context feature w from the ϕ_z
Induced distributions

- θ_d: class distribution given word type
- ϕ_z: feature distribution given class
Soft clustering

chief Gingrich Martin Newt Van Scott Roberts
Mr. Ms. John Robert President Dr. David
Street General Texas Fidelity State California
Context

Newt, Speaker • executive, operating
say, Chairman • Clinton, Dole, J.
Wall, West, East • County, AG, Journal
Efficiency

- Brown: $O(K^2V)$
- LDA: $O(KN)$
- Scaling feature counts by $\frac{1}{m}$ reduces LDA runtime m times
Testing efficiency in practice

- 60M words of North American News Text
- LDA, Brown: 100, 200, 500, 1000 classes
- LDA counts scaled by $\frac{1}{3}$
Runtimes

![Graph showing runtimes for 'brown' and 'lda' categories over different runtime hours.](image)

- Runtime hours:
 - 50
 - 100
 - 200
 - 500
 - 5.0
 - 1.0
 - 0.2

- Categories:
 - brown
 - lda

G. Chrupala (Saarland Uni) | Efficient word classes with LDA | IJCNLP 2011
Semi-supervised learning performance

- Use word classes as features
- Brown
 - different levels of hierarchy
- LDA
 - class distributions and context information
- Explore several class granularities
ANIMAL CARDINAL AGE DATE DURATION
DISEASE BUILDING HIGHWAY-STREET CITY
COUNTRY STATE-PROVINCE LAW CONTINENT
REGION MONEY NATIONALITY POLITICAL
ORDINAL CORPORATION EDUCATIONAL
GOVERNMENT PERCENT PERSON PLANT VEHICLE
WEIGHT CHEMICAL DRUG FOOD TIME
F1 error

\begin{center}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{f1_error}
\caption{F1 error comparison between brown and LDA models.}
\end{figure}
\end{center}
Morphological analysis

<table>
<thead>
<tr>
<th>Token</th>
<th>Lemma</th>
<th>MSD</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pero</td>
<td>pero</td>
<td>cc</td>
<td>but</td>
</tr>
<tr>
<td>cuando</td>
<td>cuando</td>
<td>cs</td>
<td>when</td>
</tr>
<tr>
<td>era</td>
<td>ser</td>
<td>vsii3s0</td>
<td>he was</td>
</tr>
<tr>
<td>niño</td>
<td>niño</td>
<td>ncms000</td>
<td>boy</td>
</tr>
<tr>
<td>le</td>
<td>el</td>
<td>pp3csd00</td>
<td>to him</td>
</tr>
<tr>
<td>gustaba</td>
<td>gustar</td>
<td>vmii3p0</td>
<td>it pleased</td>
</tr>
</tbody>
</table>
MA results with Morfette

- Brown: 500 classes
- LDA: 50 classes on Spanish, 100 on French
Semantic relation classification

- Task defined at Semeval 2007 and 2010
- *The bowl was full of apples, pears and oranges*
- `CONTENT-CONTAINER(pears, bowl)`
Relation inventory

- CAUSE-EFFECT
- INSTRUMENT-AGENCY
- PRODUCT-PRODUCER
- CONTENT-CONTAINER
- ENTITY-ORIGIN
- ENTITY-DESTINATION
- COMPONENT-WHOLE
- MEMBER-COLLECTION
- COMMUNICATION-_TOPIC
Relation classification results

- 500 Brown classes, 100 LDA classes
LDA RC would rank third in Semeval 2010

Without PropBank, FrameNet, WordNet, NomLex, Text Runner, Cyc...
To conclude:

- **Efficient** induction of
- **Probabilistic** word classes which
- **Match** or **improve** on hierarchical Brown classes
Thank you
Relation classification

G. Chrupala (Saarland Uni) Efficient word classes with LDA IJCNLP 2011 29 / 29