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An example
Positive examples are blank, negative are filled
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Linear models

Think of training examples as points in d-dimensional
space. Each dimension corresponds to one feature.

A linear binary classifier defines a plane in the space
which separates positive from negative examples.
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Linear decision boundary

A hyperplane is a generalization of a straight line to
> 2 dimensions

A hyperplane contains all the points in a d
dimensional space satisfying the following equation:

w1x1 + w2x2, . . . ,+wdxd + w0 = 0

Each coefficient wi can be thought of as a weight
on the corresponding feature

The vector containing all the weights
w = (w0, . . . , wd) is the parameter vector or weigth
vector
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Normal vector
Geometrically, the weight vector w is a normal
vector of the separating hyperplane
A normal vector of a surface is any vector which is
perpendicular to it
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Hyperplane as a classifier

Let

g(x) = w1x1 + w2x2, . . . ,+wdxd + w0

Then

y = sign(g(x)) =

{
+1 if g(x) ≥ 0

−1 otherwise
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Bias

The slope of the hyperplane is determined by
w1...wd. The location (intercept) is determined by
bias w0

Include bias in the weight vector and add a dummy
component to the feature vector

Set this component to x0 = 1

Then

g(x) =
d∑
i=0

wixi

g(x) = w · x
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Separating hyperplanes in 2 dimensions
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Learning

The goal of the learning process is to come up with
a “good” weight vector w

The learning process will use examples to guide the
search of a “good” w

Different notions of “goodness” exist, which yield
different learning algorithms

We will describe some of these algorithms in the
following
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Perceptron training
How do we find a set of weights that separate our
classes?
Perceptron: A simple mistake-driven online
algorithm

I Start with a zero weight vector and process each training
example in turn.

I If the current weight vector classifies the current example
incorrectly, move the weight vector in the right direction.

I If weights stop changing, stop

If examples are linearly separable, then this
algorithm is guaranteed to converge to the solution
vector
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Fixed increment online perceptron
algorithm

Binary classification, with classes +1 and −1

Decision function y′ = sign(w · x)

Perceptron(x1:N , y1:N , I):
1: w← 0
2: for i = 1...I do
3: for n = 1...N do
4: if y(n)(w · x(n)) ≤ 0 then
5: w← w + y(n)x(n)

6: return w
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Or more explicitly

1: w← 0
2: for i = 1...I do
3: for n = 1...N do
4: if y(n) = sign(w · x(n)) then
5: pass
6: else if y(n) = +1 ∧ sign(w · x(n)) = −1 then
7: w← w + x(n)

8: else if y(n) = −1 ∧ sign(w · x(n)) = +1 then
9: w← w − x(n)

10: return w
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Weight averaging

Although the algorithm is guaranteed to converge,
the solution is not unique!

Sensitive to the order in which examples are
processed

Separating the training sample does not equal good
accuracy on unseen data
Empirically, better generalization performance with
weight averaging

I A method of avoiding overfitting
I As final weight vector, use the mean of all the weight

vector values for each step of the algorithm
I (cf. regularization in a following session)
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Probabilistic model

Instead of thinking in terms of multidimensional
space...

Classification can be approached as a probability
estimation problem
We will try to find a probability distribution which

I Describes well our training data
I Allows us to make accurate predictions

We’ll look at Naive Bayes as a simplest example of
a probabilistic classifier
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Representation of examples

We are trying to classify documents. Let’s represent
a document as a sequence of terms (words) it
contains t = (t1...tn)

For (binary) classification we want to find the most
probable class:

ŷ = argmax
y∈{−1,+1}

P (Y = y|t)

But documents are close to unique: we cannot
reliably condition Y |t
Bayes’ rule to the rescue
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Bayes rule

Bayes rule determines how joint and conditional
probabilities are related.

P (Y = yi|X = x) =
P (X = x|Y )P (Y = yi)∑

i P (X = x|Y = yi)P (Y = yi)

That is:

posterior =
prior× likelihood

evidence
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Prior and likelihood

With Bayes’ rule we can invert the direction of
conditioning

ŷ = argmax
y

P (Y = y)P (t|Y = y)∑
y P (Y = y)P (t|Y = y)

= argmax
y

P (Y = y)P (t|Y = y)

Decomposed the task into estimating the prior
P (Y ) (easy) and the likelihood P (t|Y = y)
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Conditional independence

How to estimate P (t|Y = y)?

Naively assume the occurrence of each word in the
document is independent of the others, when
conditioned on the class

P (t|Y = y) =

|t|∏
i=1

P (ti|Y = y)
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Naive Bayes

Putting it all together

ŷ = argmax
y

P (Y = y)

|t|∏
i=1

P (ti|Y = y)
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Decision function

For binary classification:

g(t) =
P (Y = +1)

∏|t|
i=1 P (ti|Y = +1)

P (Y = −1)
∏|t|

i=1 P (ti|Y = −1)

=
P (Y = +1)

P (Y = −1)

|t|∏
i=1

P (ti|Y = +1)

P (ti|Y = −1)

ŷ =

{
+1 if g(t) ≥ 1

−1 otherwise

Chrupala and Stroppa (UdS) Linear models 2010 24 / 62



Documents in vector notation

Let’s represent documents as
vocabulary-size-dimensional binary vectors

V1 V2 V3 V4

Obama Ferrari voters movies
x = ( 1 0 2 0 )

Dimension i indicates how many times the ith

vocabulary item appears in document x
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Naive Bayes in vector notation

Counts appear as exponents:

g(x) =
P (+1)

P (−1)

|V |∏
i=1

(
P (Vi|+ 1)

P (Vi| − 1)

)xi

If we take the logarithm of the threshold (ln 1 = 0)
and g, we’ll get the same decision function

h(x) = ln

(
P (+1)

P (−1)

)
+

|V |∑
i=1

ln

(
P (Vi|+ 1)

P (Vi| − 1)

)
xi
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Linear classifier

Remember the linear classifier?

g(x) =w0 +
d∑
i=1

wi xi

h(x) = ln

(
P (+1)

P (−1)

)
+

|V |∑
i=1

ln

(
P (Vi|+ 1)

P (Vi| − 1)

)
xi

Log prior ratio corresponds to the bias term

Log likelihood ratios correspond to feature weights
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What is the difference

Training criterion and procedure

Perceptron
Zero-one loss function

error(w, D) =
∑

(x,y)∈D

{
0 if sign(w · x) = y

1 otherwise

Error-driven algorithm
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Naive Bayes
Maximum Likelihood criterion

P (D|θ) =
∏

(x,y)∈D

P (Y = y|θ)P (x|Y = y, θ)

Find parameters which maximize the log likelihood

θ̂ = argmax
θ

log(P (D|θ))

Parameters reduce to relative counts

+ Ad-hoc smoothing

Alternatives (e.g. maximum a posteriori)
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Comparison

Model Naive Bayes Perceptron
Model power Linear Linear
Type Generative Discriminative
Distribution modeled P (x, y) N/A
Smoothing Crucial Optional
Independence assumptions Strong None
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Probabilistic conditional model

Let’s try to come up with a probabilistic model
which has some of the advantages of perceptron

Model P (y|x) directly, and not via P (x, y) and
Bayes rule as in Naive Bayes

Avoid issue of dependencies between features of x
We’ll take linear regression as a starting point

I The goal is to adapt regression to model
class-conditional probability
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Linear Regression

Training data: observations paired with outcomes
(n ∈ R)

Observations have features (predictors, typically also
real numbers)
The model is a regression line y = ax+ b which
best fits the observations

I a is the slope
I b is the intercept
I This model has two parameters (or weigths)
I One feature = x
I Example:

F x = number of vague adjectives in property descriptions
F y = amount house sold over asking price
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Multiple linear regression

More generally y = w0 +
∑d

i=1wixi, where
I y = outcome
I w0 = intercept
I x1..xd = features vector and w1..wd weight vector
I Get rid of bias:

g(x) =
d∑

i=0

wixi = w · x

Linear regression: uses g(x) directly

Linear classifier: uses sign(g(x))
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Learning linear regression

Minimize sum squared error over N training
examples

Err(w) =
N∑
n=1

(g(x(n))− y(n))2

Closed-form formula for choosing the best weights
w:

w = (XTX)−1XTy

where the matrix X contains training example
features, and y is the vector of outcomes.
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Logistic regression

In logistic regression we use the linear model to
assign probabilities to class labels

For binary classification, predict P (Y = 1|x). But
predictions of linear regression model are ∈ R,
whereas P (Y = 1|x) ∈ [0, 1]

Instead predict logit function of the probability:

ln

(
P (Y = 1|x)

1− P (Y = 1|x)

)
= w · x

P (Y = 1|x)

1− P (Y = 1|x)
= ew·x

Chrupala and Stroppa (UdS) Linear models 2010 37 / 62



Solving for P (Y = 1|x) we obtain:

P (Y = 1|x) = ew·x(1− P (Y = 1|x))

P (Y = 1|x) = ew·x − ew·xP (Y = 1|x)

P (Y = 1|x) + ew·xP (Y = 1|x) = ew·x

P (Y = 1|x)(1 + ew·x) = ew·x

P (Y = 1|x) =
ew·x

1 + ew·x

=
exp

(∑d
i=0wixi

)
1 + exp

(∑d
i=0wixi

)
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Logistic regression - classification

Example x belongs to class 1 if:

P (Y = 1|x)

1− P (Y = 1|x)
> 1

ew·x > 1

w · x > 0
d∑
i=0

wixi > 0

Equation w · x = 0 defines a hyperplane with points
above belonging to class 1
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Multinomial logistic regression

Logistic regression generalized to more than two classes

P (Y = y|x,W) =
exp(Wy• · x)∑
y′ exp(Wy′• · x)
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Learning parameters

Conditional likelihood estimation: choose the
weights which make the probability of the observed
values y be the highest, given the observations xi
For the training set with N examples:

Ŵ = argmax
W

N∏
i=1

P (Y = y(n)|x(n),W)

= argmax
W

N∑
i=1

logP (Y = y(n)|x(n),W)
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Error function

Equivalently, we seek the value of the parameters which
minimize the error function:

Err(W, D) = −
N∑
n=1

logP (Y = y(n)|x(n),W)

where D = {(x(n), y(n))}Nn=1
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A problem in convex optimization

L-BFGS (Limited-memory
Broyden-Fletcher-Goldfarb-Shanno method)

gradient descent

conjugate gradient

iterative scaling algorithms
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Stochastic gradient descent

Gradient descent
A gradient is a slope of a function

That is, a set of partial derivatives, one for each
dimension (parameter)

By following the gradient of a convex function we
can descend to the bottom (minimum)
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Gradient descent example

Find argminθ f(θ) where f(θ) = θ2

Initial value of θ1 = −1

Gradient function: ∇f(θ) = 2θ

Update: θ(n+1) = θ(n) − η∇f(θ(n))

The learning rate η (= 0.2) controls the speed of
the descent

After first iteration: θ(2) = −1− 0.2(−2) = −0.6
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Five iterations of gradient descent
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Stochastic

We could compute the gradient of error for the full
dataset before each update
Instead

I Compute the gradient of the error for a single example
I update the weight
I Move on to the next example

On average, we’ll move in the right direction

Efficient, online algorithm
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Error gradient

The gradient of the error function is the set of
partial derivatives of the error function with respect
to the parameters Wyi

∇y,iErr(D,W) =
∂

∂Wyi

(
−

N∑
n=1

logP (Y = y|x(n),W)

)

= −
N∑

n=1

∂

∂Wyi

logP (Y = y|x(n),W)
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Single training example

∂

∂Wyi

logP (Y = y|x(n),W) =
∂

∂Wyi

logP (Y = y|x(n),W)

=
∂

∂Wyi

log
exp(Wy• · x(n))∑
y′ exp(Wy′• · x(n))

· · ·
· · ·
= x

(n)
i (1(y = y(n))− P (Y = y|x(n),W))
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Update

Stochastic gradient update step

W
(n)
yi = W

(n−1)
yi + ηx

(n)
i (1(y = y(n))− P (Y = y|x(n),W))

Chrupala and Stroppa (UdS) Linear models 2010 51 / 62



Update: Explicit

For the correct class (y = y(n))

W
(n)
yi = W

(n−1)
yi + ηx

(n)
i (1− P (Y = y|x(n),W))

where 1− P (Y = y|x(n),W) is the residual

For all other classes (y 6= y(n))

W
(n)
yi = W

(n−1)
yi − ηx(n)

i P (Y = y|x(n),W)
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Logistics Regression SGD vs Perceptron

w(n) = w(n−1)+ 1x(n)

W
(n)
yi = W

(n−1)
yi + ηx

(n)
i (1− P (Y = y|x(n),W))

Very similar update!

Perceptron is simply an instantiation of SGD for a
particular error function

The perceptron criterion: for a correctly classified
example zero error; for a misclassified example
−y(n)w · x(n)

Chrupala and Stroppa (UdS) Linear models 2010 53 / 62



Maximum entropy

Multinomial logistic regression model is also known as
the Maximum entropy model. What is the connection?
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Entia non sunt multiplicanda praeter
necessitatem
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Maximum Entropy principle

Jaynes, 1957
... in making inferences on the basis of partial information we must

use that probability distribution which has maximum entropy subject

to whatever is known. This is the only unbiased assignment we can

make; to use any other would amount to arbitrary assumption of

information which we by hypothesis do not have.
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Entropy

Out of all possible models, choose the simplest one
consistent with the data

Entropy of the distribution of X:

H(X) = −
∑
x

P (X = x) log2 P (X = x)

The uniform distribution has the highest entropy
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Finding the maximum entropy distribution:

p∗ = argmax
p∈C

H(p)

Berger et al. (1996) showed that solving this
problem is equivalent to finding the multinomial
logistic regression model whose weights maximize
the likelihood of the training data.
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Maxent principle – simple example
Find a Maximum Entropy probability distribution
p(a, b) where a ∈ {x, y} and b ∈ {0, 1}
The only thing we know are is the following
constraint: p(x, 0) + p(y, 0) = 0.6

p(a, b) 0 1
x ? ?
y ? ?
total 0.6 1

p(a, b) 0 1
x 0.3 0.2
y 0.3 0.2
total 0.6 1
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Comparison

Model Naive Bayes Perceptron Log. regression
Model power Linear Linear Linear
Type Generative Discriminative Discriminative
Distribution P (x, y) N/A P (y|x)
Smoothing Crucial Optional1 Optional1

Independence Strong None None

1Aka regularization
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The end
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Efficient averaged perceptron algorithm

Perceptron(x1:N , y1:N , I):
1: w← 0 ; wa ← 0
2: b← 0 ; ba ← 0
3: c← 1
4: for i = 1...I do
5: for n = 1...N do
6: if y(n)(w · x(n) + b) ≤ 0 then
7: w← w + y(n)x(n) ; b← b+ y(n)

8: wa ← wa + cy(n)x(n) ; ba ← ba + cy(n)

9: c← c+ 1
10: return (w −wa/c, b− ba/c)
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