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Entity recognition in news

West Indian all-rounder Phil SimonsPERSON took four for 38 on Friday as
Leicestershire ...

We want to categorize news articles based on which entities they talk
about

We can annotate a number of articles with appropriate labels

And learn a model from the annotated data

Assigning labels to words in a sentence is an example of a sequence
labeling task
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Sequence labeling

Word POS Chunk NE
West NNP B-NP B-MISC
Indian NNP I-NP I-MISC
all-rounder NN I-NP O
Phil NNP I-NP B-PER
Simons NNP I-NP I-PER
took VBD B-VP O
four CD B-NP O
for IN B-PP O
38 CD B-NP O
on IN B-PP O
Friday NNP B-NP O
as IN B-PP O
Leicestershire NNP B-NP B-ORG
beat VBD B-VP O
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Sequence labeling

Assigning sequences of labels to sequences of some objects is a very
common task (NLP, bioinformatics)

In NLP

I Speech recognition
I POS tagging
I chunking (shallow parsing)
I named-entity recognition
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In general, learn a function h : Σ∗ → L∗ to assign a sequence of
labels from L to the sequence of input elements from Σ

The most easily tractable case: each element of the input sequence
receives one label:

h : Σn → Ln

In cases where it does not naturally hold, such as chunking, we
decompose the task so it is satisfied.

IOB scheme: each element gets a label indicating if it is initial in
chunk X (B-X), a non-initial in chunk X (I-X) or is outside of any
chunk (O).
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Local classifier

The simplest approach to sequence labeling is to just use a regular
classifier, and make a local decision for each word.

Predictions for previous words can be used in predicting the current
word

This straightforward strategy can sometimes give surprisingly good
results
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HMM refresher

HMMs – simplified models of the process generating the sequences of
interest

Observations generated by hidden states
I Analogous to classes
I Dependencies between states
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Formally

Sequence of observations x = x1, x2, . . . , xN

Corresponding hidden states z = z1, z2, . . . , zN

ẑ = argmax
z

P(z|x)

= argmax
z

P(x|z)P(z)∑
z P(x|z)P(z)

= argmax
z

P(x, z)

P(x, z) =
N∏

i=1

P(xi |x1, . . . , xi−1, z1, . . . , zi )P(zi |x1, . . . , xi−1, z1, . . . , zi−1)
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Simplifying assumptions

Current state only depends on previous state

Previous observation only influence current one via the state

P(x1, x2, . . . , xN , z1, z2, . . . , zN) =
N∏

i=1

P(xi |zi )P(zi |zi−1)

P(xi |zi ) – emission probabilities

P(zi |zi−1) – transition probabilities
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A real Markov process

A dishonest casino

A casino has two dice:
I Fair die: P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
I Loaded die:

P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2

Casino player switches back-and-forth between fair and loaded die
once every 20 turns on average
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Evaluation question

Given a sequence of rolls:
12455264621461461361366616646 6163
6616366163616515615115146123562344

How likely is this sequence, given our model of the casino?
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Decoding question

Given a sequence of rolls:
12455264621461461361366616646 6163
6616366163616515615115146123562344

Which throws were generated by the fair dice and which by the
loaded dice?
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Learning question

Given a sequence of rolls:
12455264621461461361366616646 6163
6616366163616515615115146123562344

Can we infer how the casino works? How loaded is the dice? How
often the casino player changes between the dice?
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The dishonest casino model
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Example

Let the sequence of rolls be: x = (1, 2, 1, 5, 2, 1, 6, 2, 4)

A candidate parse is z = (F ,F ,F ,F ,F ,F ,F ,F ,F ,F )

What is the probability P(x, z)?

P(x, z) =
N∏

i=1

P(xi |zi )P(zi |zi−1)

(Let’s assume initial transition probabilities P(F |0) = P(L|0) = 1
2)

1

2
× P(1|F )P(F |F )× P(2|F )P(F |F ) · · ·P(4|L)

=
1

2
×
(

1

6

)10

× 0.959

= 5.21× 10−9
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Example

What about the parse z = (L, L, L, L, L, L, L, L, L, L)?

1

2
× P(1|L)P(L|L)× P(2|L)P(L|L) · · ·P(4|L)

=
1

2
× 0.52 × 0.950 = 7.9× 10−10

It’s 6.61 times more likely that the all the throws came from a fair
dice than that they came from a loaded dice.
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Example

Now let the throws be: x = (1, 6, 6, 5, 6, 2, 6, 6, 3, 6)

What is P(x,F 10) now?

1

2
×
(

1

6

)10

× 0.959 = 5.21× 10−9

Same as before

What is P(x, L10)

1

2
× 0.14 × 0.56 × 0.959 = 0.5× 10−7

So now it is 100 times more likely that all the throws came from a
loaded dice
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Decoding

Given x we want to find the best z, i.e. the one which maximizes
P(x, z)

ẑ = argmax
z

P(x, z)

Enumerate all possible z, and evalue P(x, z)?

Exponential in length of input

Dynamic programming to the rescue
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Decoding

Store intermediate results in a table for reuse

Score to remember: probability of the most likely sequence of states
up to position i , with state at position i being k

Vk(i) = max
z1,...,zi−1

P(x1, · · · , xi−1, z1, · · · , zi−1, xi , zi = k)
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Decoding
We can define Vk(i) recursively

Vl(i + 1) = max
z1,...,zi

P(x1, . . . , xi , z1, . . . , zi , xi+1, zi+1 = l)

= max
z1,...,zi

P(xi+1, zi+1 = l |x1, . . . , xi , z1, . . . , zi )

× P(x1, . . . , xi , z1, . . . , zi )

= max
z1,...,zi

P(xi+1, zi+1 = l |zi )P(x1, . . . , xi , z1, . . . , zi )

= max
k

P(xi+1, zi+1 = l) max
z1,...,zi−1

P(x1, · · · , xi , z1, · · · , zi = k)

= max
k

P(xi+1, zi+1 = l)Vk(i)

= P(xi+1|zi+1 = l) max
k

P(zi+1 = k |zi = l)Vk(i)

We introduce simplified notation for the parameters

Vl(i + 1) = El(xi+1) max
k

AklVk(i)
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Viterbi algorithm

Input x = (x1, . . . , xN)

Initialization

V0(0) = 1 where 0 is the fake starting position

Vk(0) = 0 for all k > 0

Recursion

Vl(i) = El(xi ) max
k

AklVk(i − 1)

Zl(i) = argmax
k

AklVk(i − 1)

Termination

P(x, ẑ) = max
k

Vk(N)

ẑN = argmax
k

Vk(N)

Traceback

ẑi−1 = Zzi (i)
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Learning HMM

Learning from labeled data

I Estimate parameters (emission and transition probabilities) from
(smoothed) relative counts

Akl =
C (k, l)∑
l′ C (k, l ′)

Ek(x) =
C (k, x)∑
x′ C (k , x ′)

Learning from unlabeled with Expectation Maximization
I Start with randomly initialized parameters θ0
I Iterate until convergence

F Compute (soft) labeling given current θi

F Compute updated parameters θi+1 from this labeling
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Maximum Entropy Markov Models

Model structure like in HMM

Logistic regression (Maxent) to learn P(zi |x, zi−1)

For decoding, use learned probabilities and run Viterbi
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HMMs and MEMMs

HMM POS tagging model:

ẑ = argmax
z

P(z|x)

= argmax
z

P(x|z)P(z)

= argmax
z

∏
i

P(xi |zi )P(zi |zi−1)

MEMM POS tagging model:

ẑ = argmax
z

P(z|x)

= argmax
z

∏
i

P(zi |x, zi−1)

Maximum entropy model gives conditional probabilities
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Conditioning probabilities in a HMM and a MEMM
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Viterbi in MEMMs

Decoding works almost the same as in HMM

Except entries in the DP table are values of P(zi |x, zi−1)

Recursive step: Viterbi value of time t for state j :

Vl(i + 1) = max
k

P(zi+1 = l |x, zi = k)Vk(i)
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Perceptron for sequences

SequencePerceptron({x}1:N , {z}1:N , I ):

1: w← 0
2: for i = 1...I do
3: for n = 1...N do
4: ŷ(n) ← argmaxz w · Φ(x(n), z)
5: if ẑ(n) 6= z(n) then
6: w← w + Φ(x(n), z(n))− Φ(x(n), ẑ(n))
7: return w
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Feature function

HarryPER lovesO MaryPER

Φ(x, z) =
∑

i

φ(x, zi−1, zi )

i xi = Harry ∧ zi = PER suff2(xi ) = ry ∧ zi = PER xi = loves ∧ zi = O
1 1 1 0
2 0 0 1
3 0 1 0

Φ 1 2 1
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Search

ẑ(n) = argmax
z

w · Φ(x(n), z)

Global score is computed incrementally:

w · Φ(x, z) =

|x|∑
i=1

w · φ(x, zi−1, zi )
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Update term

w(n) = w(n−1) +
[
Φ(x(n), z(n))− Φ(x(n), ẑ(n))

]
Φ(Harry loves Mary,PER O PER)

− Φ(Harry loves Mary,ORG O PER) =

xi = Harry ∧ zi = PER xi = Harry ∧ zi = ORG suff2(xi ) = ry ∧ zi = PER · · ·
1 0 2 · · ·
0 1 1 · · ·
1 -1 1 · · ·
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Comparison

Model HMM MEMM Perceptron

Type Generative Discriminative Discriminative
Distribution P(x, z) P(z|x) N/A
Smoothing Crucial Optional Optional
Output dep. Chain Chain Chain
Sup. learning No decoding No decoding With decoding
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The end
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