Sequence Labeling

Grzegorz Chrupała and Nicolas Stroppa

Google Saarland University

META

Outline

Hidden Markov Models

2 Maximum Entropy Markov Models

Sequence perceptron

Entity recognition in news

West Indian all-rounder Phil Simons_{PERSON} took four for 38 on Friday as Leicestershire ...

- We want to categorize news articles based on which entities they talk about
- We can annotate a number of articles with appropriate labels
- And learn a model from the annotated data
- Assigning labels to words in a sentence is an example of a sequence labeling task

Sequence labeling

Word	POS	Chunk	NE
West	NNP	B-NP	B-MISC
Indian	NNP	I-NP	I-MISC
all-rounder	NN	I-NP	0
Phil	NNP	I-NP	B-PER
Simons	NNP	I-NP	I-PER
took	VBD	B-VP	0
four	CD	B-NP	0
for	IN	B-PP	0
38	CD	B-NP	0
on	IN	B-PP	0
Friday	NNP	B-NP	0
as	IN	B-PP	0
Leicestershire	NNP	B-NP	B-ORG
beat	VBD	B-VP	0

Sequence labeling

- Assigning sequences of labels to sequences of some objects is a very common task (NLP, bioinformatics)
- In NI P
 - Speech recognition
 - POS tagging
 - chunking (shallow parsing)
 - named-entity recognition

- In general, learn a function $h: \Sigma^* \to \mathcal{L}^*$ to assign a sequence of labels from $\mathcal L$ to the sequence of input elements from Σ
- The most easily tractable case: each element of the input sequence receives one label:

$$h: \Sigma^n \to \mathcal{L}^n$$

- In cases where it does not naturally hold, such as chunking, we decompose the task so it is satisfied.
- IOB scheme: each element gets a label indicating if it is initial in chunk X (B-X), a non-initial in chunk X (I-X) or is outside of any chunk (O).

6 / 37

Local classifier

- The simplest approach to sequence labeling is to just use a regular classifier, and make a local decision for each word.
- Predictions for previous words can be used in predicting the current word
- This straightforward strategy can sometimes give surprisingly good results

Outline

Hidden Markov Models

2 Maximum Entropy Markov Models

Sequence perceptron

HMM refresher

- HMMs simplified models of the process generating the sequences of interest
- Observations generated by hidden states
 - Analogous to classes
 - Dependencies between states

Formally

- Sequence of observations $\mathbf{x} = x_1, x_2, \dots, x_N$
- Corresponding hidden states $\mathbf{z} = z_1, z_2, \dots, z_N$

$$\begin{split} \hat{\mathbf{z}} &= \operatorname*{argmax}_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}) \\ &= \operatorname*{argmax}_{\mathbf{z}} \frac{P(\mathbf{x}|\mathbf{z})P(\mathbf{z})}{\sum_{\mathbf{z}} P(\mathbf{x}|\mathbf{z})P(\mathbf{z})} \\ &= \operatorname*{argmax}_{\mathbf{z}} P(\mathbf{x},\mathbf{z}) \end{split}$$

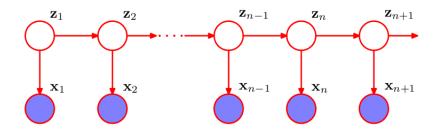
$$P(\mathbf{x},\mathbf{z}) = \prod_{i=1}^{N} P(x_i|x_1,\ldots,x_{i-1},z_1,\ldots,z_i) P(z_i|x_1,\ldots,x_{i-1},z_1,\ldots,z_{i-1})$$

Simplifying assumptions

- Current state only depends on previous state
- Previous observation only influence current one via the state

$$P(x_1, x_2, ..., x_N, z_1, z_2, ..., z_N) = \prod_{i=1}^N P(x_i|z_i)P(z_i|z_{i-1})$$

- $P(x_i|z_i)$ emission probabilities
- $P(z_i|z_{i-1})$ transition probabilities



A real Markov process

A dishonest casino

- A casino has two dice:
 - ► Fair die: P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
 - ► Loaded die:

$$P(1) = P(2) = P(3) = P(5) = 1/10$$

 $P(6) = 1/2$

 Casino player switches back-and-forth between fair and loaded die once every 20 turns on average

Evaluation question

- Given a sequence of rolls:
 12455264621461461361366616646 6163
 6616366163616515615115146123562344
- How likely is this sequence, given our model of the casino?

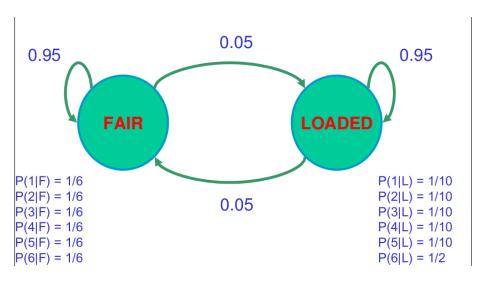
Decoding question

- Given a sequence of rolls:
 12455264621461461361366616646 6163
 6616366163616515615115146123562344
- Which throws were generated by the fair dice and which by the loaded dice?

Learning question

- Given a sequence of rolls:
 12455264621461461361366616646 6163
 6616366163616515615115146123562344
- Can we infer how the casino works? How loaded is the dice? How often the casino player changes between the dice?

The dishonest casino model



- Let the sequence of rolls be: $\mathbf{x} = (1, 2, 1, 5, 2, 1, 6, 2, 4)$
- A candidate parse is $\mathbf{z} = (F, F, F, F, F, F, F, F, F, F)$
- What is the probability $P(\mathbf{x}, \mathbf{z})$?

$$P(\mathbf{x},\mathbf{z}) = \prod_{i=1}^{N} P(x_i|z_i) P(z_i|z_{i-1})$$

• (Let's assume initial transition probabilities $P(F|0) = P(L|0) = \frac{1}{2}$)

- Let the sequence of rolls be: $\mathbf{x} = (1, 2, 1, 5, 2, 1, 6, 2, 4)$
- A candidate parse is $\mathbf{z} = (F, F, F, F, F, F, F, F, F, F)$
- What is the probability $P(\mathbf{x}, \mathbf{z})$?

$$P(\mathbf{x},\mathbf{z}) = \prod_{i=1}^{N} P(x_i|z_i) P(z_i|z_{i-1})$$

• (Let's assume initial transition probabilities $P(F|0) = P(L|0) = \frac{1}{2}$)

$$\frac{1}{2} \times P(1|F)P(F|F) \times P(2|F)P(F|F) \cdots P(4|L)$$

$$= \frac{1}{2} \times \left(\frac{1}{6}\right)^{10} \times 0.95^{9}$$

$$= 5.21 \times 10^{-9}$$

- Let the sequence of rolls be: $\mathbf{x} = (1, 2, 1, 5, 2, 1, 6, 2, 4)$
- A candidate parse is $\mathbf{z} = (F, F, F, F, F, F, F, F, F, F)$
- What is the probability P(x, z)?

$$P(\mathbf{x},\mathbf{z}) = \prod_{i=1}^{N} P(x_i|z_i) P(z_i|z_{i-1})$$

• (Let's assume initial transition probabilities $P(F|0) = P(L|0) = \frac{1}{2}$)

$$\frac{1}{2} \times P(1|F)P(F|F) \times P(2|F)P(F|F) \cdots P(4|L)$$

$$= \frac{1}{2} \times \left(\frac{1}{6}\right)^{10} \times 0.95^{9}$$

$$= 5.21 \times 10^{-9}$$

• What about the parse $\mathbf{z} = (L, L, L, L, L, L, L, L, L)$?

$$\frac{1}{2} \times P(1|L)P(L|L) \times P(2|L)P(L|L) \cdots P(4|L)$$
$$= \frac{1}{2} \times 0.5^{2} \times 0.95^{0} = 7.9 \times 10^{-10}$$

 It's 6.61 times more likely that the all the throws came from a fair dice than that they came from a loaded dice.

- Now let the throws be: $\mathbf{x} = (1, 6, 6, 5, 6, 2, 6, 6, 3, 6)$
- What is $P(\mathbf{x}, F^{10})$ now?

- Now let the throws be: $\mathbf{x} = (1, 6, 6, 5, 6, 2, 6, 6, 3, 6)$
- What is $P(\mathbf{x}, F^{10})$ now?

$$\frac{1}{2} \times \left(\frac{1}{6}\right)^{10} \times 0.95^9 = 5.21 \times 10^{-9}$$

Same as before

- Now let the throws be: $\mathbf{x} = (1, 6, 6, 5, 6, 2, 6, 6, 3, 6)$
- What is $P(\mathbf{x}, F^{10})$ now?

$$\frac{1}{2} \times \left(\frac{1}{6}\right)^{10} \times 0.95^9 = 5.21 \times 10^{-9}$$

Same as before

• What is $P(\mathbf{x}, L^{10})$

- Now let the throws be: $\mathbf{x} = (1, 6, 6, 5, 6, 2, 6, 6, 3, 6)$
- What is $P(\mathbf{x}, F^{10})$ now?

$$\frac{1}{2} \times \left(\frac{1}{6}\right)^{10} \times 0.95^9 = 5.21 \times 10^{-9}$$

Same as before

• What is $P(\mathbf{x}, L^{10})$

$$\frac{1}{2} \times 0.1^4 \times 0.5^6 \times 0.95^9 = 0.5 \times 10^{-7}$$

• So now it is 100 times more likely that all the throws came from a loaded dice

◆ロト ◆卸 ト ◆差 ト ◆差 ト ・ 差 ・ か Q (^*)

• Given \mathbf{x} we want to find the best \mathbf{z} , i.e. the one which maximizes $P(\mathbf{x}, \mathbf{z})$

$$\hat{z} = \operatorname*{argmax}_{\mathbf{z}} P(\mathbf{x}, \mathbf{z})$$

• Enumerate all possible z, and evalue P(x, z)?

• Given \mathbf{x} we want to find the best \mathbf{z} , i.e. the one which maximizes $P(\mathbf{x}, \mathbf{z})$

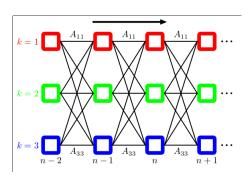
$$\hat{z} = \operatorname*{argmax}_{\mathbf{z}} P(\mathbf{x}, \mathbf{z})$$

- Enumerate all possible z, and evalue P(x, z)?
- Exponential in length of input

• Given \mathbf{x} we want to find the best \mathbf{z} , i.e. the one which maximizes $P(\mathbf{x}, \mathbf{z})$

$$\hat{z} = \operatorname*{argmax}_{\mathbf{z}} P(\mathbf{x}, \mathbf{z})$$

- Enumerate all possible z, and evalue P(x, z)?
- Exponential in length of input
- Dynamic programming to the rescue



- Store intermediate results in a table for reuse
- Score to remember: probability of the most likely sequence of states up to position i, with state at position i being k

$$V_k(i) = \max_{z_1,\dots,z_{i-1}} P(x_1,\dots,x_{i-1},z_1,\dots,z_{i-1},x_i,z_i=k)$$

• We can define $V_k(i)$ recursively

$$V_{I}(i+1) = \max_{z_{1},...,z_{i}} P(x_{1},...,x_{i},z_{1},...,z_{i},x_{i+1},z_{i+1} = I)$$

$$= \max_{z_{1},...,z_{i}} P(x_{i+1},z_{i+1} = I | x_{1},...,x_{i},z_{1},...,z_{i})$$

$$\times P(x_{1},...,x_{i},z_{1},...,z_{i})$$

$$= \max_{z_{1},...,z_{i}} P(x_{i+1},z_{i+1} = I | z_{i}) P(x_{1},...,x_{i},z_{1},...,z_{i})$$

$$= \max_{k} P(x_{i+1},z_{i+1} = I) \max_{z_{1},...,z_{i-1}} P(x_{1},...,x_{i},z_{1},...,z_{i} = k)$$

$$= \max_{k} P(x_{i+1},z_{i+1} = I) V_{k}(i)$$

$$= P(x_{i+1} | z_{i+1} = I) \max_{k} P(z_{i+1} = k | z_{i} = I) V_{k}(i)$$

We introduce simplified notation for the parameters

$$V_I(i+1) = E_I(x_{i+1}) \max_k A_{kI} V_k(i)$$

Viterbi algorithm

- Input $\mathbf{x} = (x_1, ..., x_N)$
- Initialization

$$V_0(0)=1$$
 where 0 is the fake starting position $V_k(0)=0$ for all $k>0$

Recursion

$$V_l(i) = E_l(x_i) \max_k A_{kl} V_k(i-1)$$

 $Z_l(i) = \operatorname*{argmax}_k A_{kl} V_k(i-1)$

Termination

$$P(\mathbf{x}, \hat{\mathbf{z}}) = \max_{k} V_k(N)$$
$$\hat{z_N} = \operatorname*{argmax}_{k} V_k(N)$$

Learning HMM

• Learning from labeled data

Learning HMM

- Learning from labeled data
 - Estimate parameters (emission and transition probabilities) from (smoothed) relative counts

Learning HMM

- Learning from labeled data
 - Estimate parameters (emission and transition probabilities) from (smoothed) relative counts

$$A_{kl} = \frac{C(k,l)}{\sum_{l'} C(k,l')}$$

$$E_k(x) = \frac{C(k,x)}{\sum_{x'} C(k,x')}$$

- Learning from unlabeled with Expectation Maximization
 - Start with randomly initialized parameters θ_0
 - Iterate until convergence
 - ★ Compute (soft) labeling given current θ_i
 - ★ Compute updated parameters θ_{i+1} from this labeling

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)

Outline

Hidden Markov Models

2 Maximum Entropy Markov Models

Sequence perceptron

Maximum Entropy Markov Models

- Model structure like in HMM
- Logistic regression (Maxent) to learn $P(z_i|\mathbf{x},z_{i-1})$
- For decoding, use learned probabilities and run Viterbi

HMMs and MEMMs

• HMM POS tagging model:

$$\begin{split} \hat{\mathbf{z}} &= \operatorname*{argmax}_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}) \\ &= \operatorname*{argmax}_{\mathbf{z}} P(\mathbf{x}|\mathbf{z}) P(\mathbf{z}) \\ &= \operatorname*{argmax}_{\mathbf{z}} \prod_{i} P(x_{i}|z_{i}) P(z_{i}|z_{i-1}) \end{split}$$

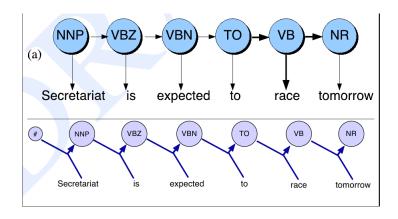
MEMM POS tagging model:

$$\hat{\mathbf{z}} = \underset{\mathbf{z}}{\operatorname{argmax}} P(\mathbf{z}|\mathbf{x})$$

$$= \underset{\mathbf{z}}{\operatorname{argmax}} \prod_{i} P(z_{i}|\mathbf{x}, z_{i-1})$$

Maximum entropy model gives conditional probabilities

Conditioning probabilities in a HMM and a MEMM



Viterbi in MEMMs

- Decoding works almost the same as in HMM
- Except entries in the DP table are values of $P(z_i|\mathbf{x}, z_{i-1})$
- Recursive step: Viterbi value of time *t* for state *j*:

$$V_l(i+1) = \max_k P(z_{i+1} = l | \mathbf{x}, z_i = k) V_k(i)$$

Outline

Hidden Markov Models

2 Maximum Entropy Markov Models

Sequence perceptron

Perceptron for sequences

```
SEQUENCE PERCEPTRON (\{x\}^{1:N}, \{z\}^{1:N}, I):

1: \mathbf{w} \leftarrow \mathbf{0}

2: for i = 1...I do

3: for n = 1...N do

4: \hat{\mathbf{y}}^{(n)} \leftarrow \operatorname{argmax}_{\mathbf{z}} \mathbf{w} \cdot \Phi(\mathbf{x}^{(n)}, \mathbf{z})

5: if \hat{\mathbf{z}}^{(n)} \neq \mathbf{z}^{(n)} then

6: \mathbf{w} \leftarrow \mathbf{w} + \Phi(\mathbf{x}^{(n)}, \mathbf{z}^{(n)}) - \Phi(\mathbf{x}^{(n)}, \hat{\mathbf{z}}^{(n)})

7: return \mathbf{w}
```

Feature function

Harryper loves_O Maryper

$$\Phi(\mathbf{x},\mathbf{z}) = \sum_{i} \phi(\mathbf{x},z_{i-1},z_{i})$$

i	$x_i = Harry \wedge z_i = PER$	$\operatorname{suff}_2(x_i) = \operatorname{ry} \wedge z_i = \operatorname{PER}$	$x_i = loves \land z_i = O$
1	1	1	0
2	0	0	1
3	0	1	0
Φ	1	2	1

Search

$$\hat{\mathbf{z}}^{(n)} = \operatorname*{argmax}_{\mathbf{z}} \mathbf{w} \cdot \Phi(\mathbf{x}^{(n)}, \mathbf{z})$$

Global score is computed incrementally:

$$\mathbf{w} \cdot \Phi(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{|\mathbf{x}|} \mathbf{w} \cdot \phi(\mathbf{x}, z_{i-1}, z_i)$$

Update term

$$\boldsymbol{w}^{(n)} = \boldsymbol{w}^{(n-1)} + \left[\boldsymbol{\Phi}(\boldsymbol{x}^{(n)}, \boldsymbol{z}^{(n)}) - \boldsymbol{\Phi}(\boldsymbol{x}^{(n)}, \hat{\boldsymbol{z}}^{(n)}) \right]$$

Φ(Harry loves Mary, PER O PER)

- $\Phi(Harry loves Mary, ORG O PER) =$

Comparison

Model	HMM	MEMM	Perceptron
Type	Generative	Discriminative	Discriminative
Distribution	P(x,z)	$P(\mathbf{z} \mathbf{x})$	N/A
Smoothing	Crucial	Optional	Optional
Output dep.	Chain	Chain	Chain
Sup. learning	No decoding	No decoding	With decoding

The end