
Sequence Labeling

Grzegorz Chrupa la and Nicolas Stroppa

Google
Saarland University

META

Stroppa and Chrupala (UdS) Sequences 2010 1 / 37

Outline

1 Hidden Markov Models

2 Maximum Entropy Markov Models

3 Sequence perceptron

Stroppa and Chrupala (UdS) Sequences 2010 2 / 37

Entity recognition in news

West Indian all-rounder Phil SimonsPERSON took four for 38 on Friday as
Leicestershire ...

We want to categorize news articles based on which entities they talk
about

We can annotate a number of articles with appropriate labels

And learn a model from the annotated data

Assigning labels to words in a sentence is an example of a sequence
labeling task

Stroppa and Chrupala (UdS) Sequences 2010 3 / 37

Sequence labeling

Word POS Chunk NE
West NNP B-NP B-MISC
Indian NNP I-NP I-MISC
all-rounder NN I-NP O
Phil NNP I-NP B-PER
Simons NNP I-NP I-PER
took VBD B-VP O
four CD B-NP O
for IN B-PP O
38 CD B-NP O
on IN B-PP O
Friday NNP B-NP O
as IN B-PP O
Leicestershire NNP B-NP B-ORG
beat VBD B-VP O

Stroppa and Chrupala (UdS) Sequences 2010 4 / 37

Sequence labeling

Assigning sequences of labels to sequences of some objects is a very
common task (NLP, bioinformatics)

In NLP

I Speech recognition
I POS tagging
I chunking (shallow parsing)
I named-entity recognition

Stroppa and Chrupala (UdS) Sequences 2010 5 / 37

In general, learn a function h : Σ∗ → L∗ to assign a sequence of
labels from L to the sequence of input elements from Σ

The most easily tractable case: each element of the input sequence
receives one label:

h : Σn → Ln

In cases where it does not naturally hold, such as chunking, we
decompose the task so it is satisfied.

IOB scheme: each element gets a label indicating if it is initial in
chunk X (B-X), a non-initial in chunk X (I-X) or is outside of any
chunk (O).

Stroppa and Chrupala (UdS) Sequences 2010 6 / 37

Local classifier

The simplest approach to sequence labeling is to just use a regular
classifier, and make a local decision for each word.

Predictions for previous words can be used in predicting the current
word

This straightforward strategy can sometimes give surprisingly good
results

Stroppa and Chrupala (UdS) Sequences 2010 7 / 37

Outline

1 Hidden Markov Models

2 Maximum Entropy Markov Models

3 Sequence perceptron

Stroppa and Chrupala (UdS) Sequences 2010 8 / 37

HMM refresher

HMMs – simplified models of the process generating the sequences of
interest

Observations generated by hidden states
I Analogous to classes
I Dependencies between states

Stroppa and Chrupala (UdS) Sequences 2010 9 / 37

Formally

Sequence of observations x = x1, x2, . . . , xN

Corresponding hidden states z = z1, z2, . . . , zN

ẑ = argmax
z

P(z|x)

= argmax
z

P(x|z)P(z)∑
z P(x|z)P(z)

= argmax
z

P(x, z)

P(x, z) =
N∏

i=1

P(xi |x1, . . . , xi−1, z1, . . . , zi)P(zi |x1, . . . , xi−1, z1, . . . , zi−1)

Stroppa and Chrupala (UdS) Sequences 2010 10 / 37

Simplifying assumptions

Current state only depends on previous state

Previous observation only influence current one via the state

P(x1, x2, . . . , xN , z1, z2, . . . , zN) =
N∏

i=1

P(xi |zi)P(zi |zi−1)

P(xi |zi) – emission probabilities

P(zi |zi−1) – transition probabilities

Stroppa and Chrupala (UdS) Sequences 2010 11 / 37

Stroppa and Chrupala (UdS) Sequences 2010 12 / 37

A real Markov process

A dishonest casino

A casino has two dice:
I Fair die: P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
I Loaded die:

P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2

Casino player switches back-and-forth between fair and loaded die
once every 20 turns on average

Stroppa and Chrupala (UdS) Sequences 2010 13 / 37

Evaluation question

Given a sequence of rolls:
12455264621461461361366616646 6163
6616366163616515615115146123562344

How likely is this sequence, given our model of the casino?

Stroppa and Chrupala (UdS) Sequences 2010 14 / 37

Decoding question

Given a sequence of rolls:
12455264621461461361366616646 6163
6616366163616515615115146123562344

Which throws were generated by the fair dice and which by the
loaded dice?

Stroppa and Chrupala (UdS) Sequences 2010 15 / 37

Learning question

Given a sequence of rolls:
12455264621461461361366616646 6163
6616366163616515615115146123562344

Can we infer how the casino works? How loaded is the dice? How
often the casino player changes between the dice?

Stroppa and Chrupala (UdS) Sequences 2010 16 / 37

The dishonest casino model

Stroppa and Chrupala (UdS) Sequences 2010 17 / 37

Example

Let the sequence of rolls be: x = (1, 2, 1, 5, 2, 1, 6, 2, 4)

A candidate parse is z = (F ,F ,F ,F ,F ,F ,F ,F ,F ,F)

What is the probability P(x, z)?

P(x, z) =
N∏

i=1

P(xi |zi)P(zi |zi−1)

(Let’s assume initial transition probabilities P(F |0) = P(L|0) = 1
2)

1

2
× P(1|F)P(F |F)× P(2|F)P(F |F) · · ·P(4|L)

=
1

2
×
(

1

6

)10

× 0.959

= 5.21× 10−9

Stroppa and Chrupala (UdS) Sequences 2010 18 / 37

Example

Let the sequence of rolls be: x = (1, 2, 1, 5, 2, 1, 6, 2, 4)

A candidate parse is z = (F ,F ,F ,F ,F ,F ,F ,F ,F ,F)

What is the probability P(x, z)?

P(x, z) =
N∏

i=1

P(xi |zi)P(zi |zi−1)

(Let’s assume initial transition probabilities P(F |0) = P(L|0) = 1
2)

1

2
× P(1|F)P(F |F)× P(2|F)P(F |F) · · ·P(4|L)

=
1

2
×
(

1

6

)10

× 0.959

= 5.21× 10−9

Stroppa and Chrupala (UdS) Sequences 2010 18 / 37

Example

Let the sequence of rolls be: x = (1, 2, 1, 5, 2, 1, 6, 2, 4)

A candidate parse is z = (F ,F ,F ,F ,F ,F ,F ,F ,F ,F)

What is the probability P(x, z)?

P(x, z) =
N∏

i=1

P(xi |zi)P(zi |zi−1)

(Let’s assume initial transition probabilities P(F |0) = P(L|0) = 1
2)

1

2
× P(1|F)P(F |F)× P(2|F)P(F |F) · · ·P(4|L)

=
1

2
×
(

1

6

)10

× 0.959

= 5.21× 10−9

Stroppa and Chrupala (UdS) Sequences 2010 18 / 37

Example

What about the parse z = (L, L, L, L, L, L, L, L, L, L)?

1

2
× P(1|L)P(L|L)× P(2|L)P(L|L) · · ·P(4|L)

=
1

2
× 0.52 × 0.950 = 7.9× 10−10

It’s 6.61 times more likely that the all the throws came from a fair
dice than that they came from a loaded dice.

Stroppa and Chrupala (UdS) Sequences 2010 19 / 37

Example

Now let the throws be: x = (1, 6, 6, 5, 6, 2, 6, 6, 3, 6)

What is P(x,F 10) now?

1

2
×
(

1

6

)10

× 0.959 = 5.21× 10−9

Same as before

What is P(x, L10)

1

2
× 0.14 × 0.56 × 0.959 = 0.5× 10−7

So now it is 100 times more likely that all the throws came from a
loaded dice

Stroppa and Chrupala (UdS) Sequences 2010 20 / 37

Example

Now let the throws be: x = (1, 6, 6, 5, 6, 2, 6, 6, 3, 6)

What is P(x,F 10) now?

1

2
×
(

1

6

)10

× 0.959 = 5.21× 10−9

Same as before

What is P(x, L10)

1

2
× 0.14 × 0.56 × 0.959 = 0.5× 10−7

So now it is 100 times more likely that all the throws came from a
loaded dice

Stroppa and Chrupala (UdS) Sequences 2010 20 / 37

Example

Now let the throws be: x = (1, 6, 6, 5, 6, 2, 6, 6, 3, 6)

What is P(x,F 10) now?

1

2
×
(

1

6

)10

× 0.959 = 5.21× 10−9

Same as before

What is P(x, L10)

1

2
× 0.14 × 0.56 × 0.959 = 0.5× 10−7

So now it is 100 times more likely that all the throws came from a
loaded dice

Stroppa and Chrupala (UdS) Sequences 2010 20 / 37

Example

Now let the throws be: x = (1, 6, 6, 5, 6, 2, 6, 6, 3, 6)

What is P(x,F 10) now?

1

2
×
(

1

6

)10

× 0.959 = 5.21× 10−9

Same as before

What is P(x, L10)

1

2
× 0.14 × 0.56 × 0.959 = 0.5× 10−7

So now it is 100 times more likely that all the throws came from a
loaded dice

Stroppa and Chrupala (UdS) Sequences 2010 20 / 37

Decoding

Given x we want to find the best z, i.e. the one which maximizes
P(x, z)

ẑ = argmax
z

P(x, z)

Enumerate all possible z, and evalue P(x, z)?

Exponential in length of input

Dynamic programming to the rescue

Stroppa and Chrupala (UdS) Sequences 2010 21 / 37

Decoding

Given x we want to find the best z, i.e. the one which maximizes
P(x, z)

ẑ = argmax
z

P(x, z)

Enumerate all possible z, and evalue P(x, z)?

Exponential in length of input

Dynamic programming to the rescue

Stroppa and Chrupala (UdS) Sequences 2010 21 / 37

Decoding

Given x we want to find the best z, i.e. the one which maximizes
P(x, z)

ẑ = argmax
z

P(x, z)

Enumerate all possible z, and evalue P(x, z)?

Exponential in length of input

Dynamic programming to the rescue

Stroppa and Chrupala (UdS) Sequences 2010 21 / 37

Decoding

Store intermediate results in a table for reuse

Score to remember: probability of the most likely sequence of states
up to position i , with state at position i being k

Vk(i) = max
z1,...,zi−1

P(x1, · · · , xi−1, z1, · · · , zi−1, xi , zi = k)

Stroppa and Chrupala (UdS) Sequences 2010 22 / 37

Decoding
We can define Vk(i) recursively

Vl(i + 1) = max
z1,...,zi

P(x1, . . . , xi , z1, . . . , zi , xi+1, zi+1 = l)

= max
z1,...,zi

P(xi+1, zi+1 = l |x1, . . . , xi , z1, . . . , zi)

× P(x1, . . . , xi , z1, . . . , zi)

= max
z1,...,zi

P(xi+1, zi+1 = l |zi)P(x1, . . . , xi , z1, . . . , zi)

= max
k

P(xi+1, zi+1 = l) max
z1,...,zi−1

P(x1, · · · , xi , z1, · · · , zi = k)

= max
k

P(xi+1, zi+1 = l)Vk(i)

= P(xi+1|zi+1 = l) max
k

P(zi+1 = k |zi = l)Vk(i)

We introduce simplified notation for the parameters

Vl(i + 1) = El(xi+1) max
k

AklVk(i)

Stroppa and Chrupala (UdS) Sequences 2010 23 / 37

Viterbi algorithm

Input x = (x1, . . . , xN)

Initialization

V0(0) = 1 where 0 is the fake starting position

Vk(0) = 0 for all k > 0

Recursion

Vl(i) = El(xi) max
k

AklVk(i − 1)

Zl(i) = argmax
k

AklVk(i − 1)

Termination

P(x, ẑ) = max
k

Vk(N)

ẑN = argmax
k

Vk(N)

Traceback

ẑi−1 = Zzi (i)

Stroppa and Chrupala (UdS) Sequences 2010 24 / 37

Learning HMM

Learning from labeled data

I Estimate parameters (emission and transition probabilities) from
(smoothed) relative counts

Akl =
C (k, l)∑
l′ C (k, l ′)

Ek(x) =
C (k, x)∑
x′ C (k , x ′)

Learning from unlabeled with Expectation Maximization
I Start with randomly initialized parameters θ0
I Iterate until convergence

F Compute (soft) labeling given current θi

F Compute updated parameters θi+1 from this labeling

Stroppa and Chrupala (UdS) Sequences 2010 25 / 37

Learning HMM

Learning from labeled data
I Estimate parameters (emission and transition probabilities) from

(smoothed) relative counts

Akl =
C (k, l)∑
l′ C (k, l ′)

Ek(x) =
C (k, x)∑
x′ C (k , x ′)

Learning from unlabeled with Expectation Maximization
I Start with randomly initialized parameters θ0
I Iterate until convergence

F Compute (soft) labeling given current θi

F Compute updated parameters θi+1 from this labeling

Stroppa and Chrupala (UdS) Sequences 2010 25 / 37

Learning HMM

Learning from labeled data
I Estimate parameters (emission and transition probabilities) from

(smoothed) relative counts

Akl =
C (k , l)∑
l′ C (k , l ′)

Ek(x) =
C (k , x)∑
x′ C (k , x ′)

Learning from unlabeled with Expectation Maximization
I Start with randomly initialized parameters θ0
I Iterate until convergence

F Compute (soft) labeling given current θi

F Compute updated parameters θi+1 from this labeling

Stroppa and Chrupala (UdS) Sequences 2010 25 / 37

Outline

1 Hidden Markov Models

2 Maximum Entropy Markov Models

3 Sequence perceptron

Stroppa and Chrupala (UdS) Sequences 2010 26 / 37

Maximum Entropy Markov Models

Model structure like in HMM

Logistic regression (Maxent) to learn P(zi |x, zi−1)

For decoding, use learned probabilities and run Viterbi

Stroppa and Chrupala (UdS) Sequences 2010 27 / 37

HMMs and MEMMs

HMM POS tagging model:

ẑ = argmax
z

P(z|x)

= argmax
z

P(x|z)P(z)

= argmax
z

∏
i

P(xi |zi)P(zi |zi−1)

MEMM POS tagging model:

ẑ = argmax
z

P(z|x)

= argmax
z

∏
i

P(zi |x, zi−1)

Maximum entropy model gives conditional probabilities

Stroppa and Chrupala (UdS) Sequences 2010 28 / 37

Conditioning probabilities in a HMM and a MEMM

Stroppa and Chrupala (UdS) Sequences 2010 29 / 37

Viterbi in MEMMs

Decoding works almost the same as in HMM

Except entries in the DP table are values of P(zi |x, zi−1)

Recursive step: Viterbi value of time t for state j :

Vl(i + 1) = max
k

P(zi+1 = l |x, zi = k)Vk(i)

Stroppa and Chrupala (UdS) Sequences 2010 30 / 37

Outline

1 Hidden Markov Models

2 Maximum Entropy Markov Models

3 Sequence perceptron

Stroppa and Chrupala (UdS) Sequences 2010 31 / 37

Perceptron for sequences

SequencePerceptron({x}1:N , {z}1:N , I):

1: w← 0
2: for i = 1...I do
3: for n = 1...N do
4: ŷ(n) ← argmaxz w · Φ(x(n), z)
5: if ẑ(n) 6= z(n) then
6: w← w + Φ(x(n), z(n))− Φ(x(n), ẑ(n))
7: return w

Stroppa and Chrupala (UdS) Sequences 2010 32 / 37

Feature function

HarryPER lovesO MaryPER

Φ(x, z) =
∑

i

φ(x, zi−1, zi)

i xi = Harry ∧ zi = PER suff2(xi) = ry ∧ zi = PER xi = loves ∧ zi = O
1 1 1 0
2 0 0 1
3 0 1 0

Φ 1 2 1

Stroppa and Chrupala (UdS) Sequences 2010 33 / 37

Search

ẑ(n) = argmax
z

w · Φ(x(n), z)

Global score is computed incrementally:

w · Φ(x, z) =

|x|∑
i=1

w · φ(x, zi−1, zi)

Stroppa and Chrupala (UdS) Sequences 2010 34 / 37

Update term

w(n) = w(n−1) +
[
Φ(x(n), z(n))− Φ(x(n), ẑ(n))

]
Φ(Harry loves Mary,PER O PER)

− Φ(Harry loves Mary,ORG O PER) =

xi = Harry ∧ zi = PER xi = Harry ∧ zi = ORG suff2(xi) = ry ∧ zi = PER · · ·
1 0 2 · · ·
0 1 1 · · ·
1 -1 1 · · ·

Stroppa and Chrupala (UdS) Sequences 2010 35 / 37

Comparison

Model HMM MEMM Perceptron

Type Generative Discriminative Discriminative
Distribution P(x, z) P(z|x) N/A
Smoothing Crucial Optional Optional
Output dep. Chain Chain Chain
Sup. learning No decoding No decoding With decoding

Stroppa and Chrupala (UdS) Sequences 2010 36 / 37

The end

Stroppa and Chrupala (UdS) Sequences 2010 37 / 37

	Hidden Markov Models
	Maximum Entropy Markov Models
	Sequence perceptron

