
Towards a Machine-Learning
Architecture for Lexical Functional

Grammar Parsing

Grzegorz Chrupa la

A dissertation submitted in fulfilment of the requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University
School of Computing

Supervisor: Prof. Josef van Genabith

April 2008

Declaration

I hereby certify that this material, which I now submit for assessment on the pro-
gramme of study leading to the award of Doctor of Philosophy (Ph.D.) is entirely my
own work, that I have exercised reasonable care to ensure that the work is original, and
does not to the best of my knowledge breach any law of copyright, and has not been
taken from the work of others save and to the extent that such work has been cited
and acknowledged within the text of my work.

Signed (Grzegorz Chrupa la)
Student ID 55130089
Date April 2008

i

Contents

1 Introduction 1
1.1 Shallow vs Deep Parsing . 1
1.2 Deep Data-Driven Parsing . 1
1.3 Multilingual Treebank-Based LFG . 2
1.4 Machine Learning . 4
1.5 The Structure of the Thesis . 4
1.6 Summary of Main Results . 5

2 Treebank-Based Lexical Functional Grammar Parsing 7
2.1 Lexical Functional Grammar . 7
2.2 LFG parsing . 11

2.2.1 Treebank-based LFG parsing . 11
2.3 GramLab – Treebank-Based Acquisition of Wide-Coverage LFG Resources 15

3 Machine Learning 17
3.1 Introduction . 17

3.1.1 Supervised learning . 17
3.1.2 Feature representation . 17

3.2 Classification . 18
3.2.1 Perceptron . 18
3.2.2 K-NN . 20
3.2.3 Logistic Regression and MaxEnt 23
3.2.4 Support Vector Machines . 27

3.3 Sequence Labeling . 32
3.3.1 Maximum Entropy Markov Models 33
3.3.2 Conditional Random Fields and other structured prediction meth-

ods . 34
3.4 Summary . 35

4 Treebank-Based LFG Parsing Resources for Spanish 36
4.1 Introduction . 36

4.1.1 The Cast3LB Spanish treebank 36
4.2 Comparison to Previous Work . 38
4.3 Improving Spanish LFG Resources . 40

4.3.1 Clitic doubling and null subjects 40
4.3.2 Periphrastic constructions . 42

ii

4.4 Summary . 45

5 Learning Function Labels 46
5.1 Introduction . 46
5.2 Learning Cast3LB Function Labels . 46

5.2.1 Annotation algorithm . 47
5.2.2 Previous work on learning function labels 48
5.2.3 Assigning Cast3LB function labels to parsed Spanish text 49
5.2.4 Cast3LB function label assignment evaluation 51
5.2.5 Task-based LFG annotation evaluation 55
5.2.6 Error analysis . 56
5.2.7 Adapting to the AnCora-ESP corpus 57

5.3 Improving Training for Function Labeling by Using Parser Output . . . 60
5.3.1 Introduction . 60
5.3.2 Methods . 61
5.3.3 Experimental results . 67

5.4 Summary . 71

6 Learning Morphology and Lemmatization 72
6.1 Introduction . 72

6.1.1 Main results obtained . 72
6.2 Previous Work . 73

6.2.1 Inductive Logic Programming . 73
6.2.2 Memory-based learning . 75
6.2.3 Analogical learning . 76
6.2.4 Morphological tagging and disambiguation 78

6.3 Simple Data-Driven Context-Sensitive Lemmatization 79
6.3.1 Lemmatization as a classification task 79
6.3.2 Experiments . 81
6.3.3 Evaluation results and error analysis 83
6.3.4 Conclusion . 87

6.4 Morfette – a Combined Probabilistic Model for Morphological Tagging
and Lemmatization . 87
6.4.1 Introduction . 87
6.4.2 The Morfette system . 88
6.4.3 Evaluation . 91
6.4.4 Error analysis . 93
6.4.5 Integrating lexicons . 95
6.4.6 Improving lemma class discovery 99
6.4.7 Conclusion . 102

6.5 Morphological Analysis and Synthesis: ILP and Classifier-Based Ap-
proaches . 103
6.5.1 Data . 104
6.5.2 Model and features . 104
6.5.3 Results and error analysis . 105

6.6 Summary . 108

iii

7 Conclusion 110
7.1 Summary of Main Contributions . 110
7.2 Directions for Future Research . 111

7.2.1 Grammatical functions . 111
7.2.2 Morphology and Morfette . 112
7.2.3 Other aspects of LFG parsing . 113

iv

List of Figures

2.1 LFG representation of But stocks kept falling 9
2.2 Pipeline LFG parsing architecture . 14

3.1 Averaged Perceptron algorithm . 19
3.2 Example separating hyperplanes in two dimensions 20
3.3 Separating hyperplane and support vectors 28
3.4 Two dimensional classification example, non-separable in two dimen-

sions, becomes separable when mapped to 3 dimensions by (x1, x2) 7→
(x2

1, 2x1x2, x
2
2) . 31

4.1 On top flat structure of S. Cast3LB function labels are shown in bold.
Below the corresponding (simplified) LFG f-structure. Translation: Let
the reader not expect a definition. 37

4.2 Comparison of f-structure representations for NPs 38
4.3 Comparison of f-structure representations for copular verbs 39
4.4 Periphrastic construction with two light verbs: The treebank tree, and

the f-structure produced . 43
4.5 Treatment of periphrastic constructions by means of functional uncer-

tainty equations with off-path constraints 44

5.1 Examples of features extracted from an example node 52
5.2 Learning curves for TiMBL (t), MaxEnt (m) and SVM (s). 53
5.3 Subject - Direct Object ambiguity in a Spanish relative clause. 57
5.4 Algorithm for extracting training instances from a parser tree T and gold

tree T ′ . 65
5.5 Example gold and parser tree . 65

6.1 Instance for task 2 in Stroppa and Yvon (2005) 77
6.2 Features extracted for the MSD-tagging model from an example Roma-

nian phrase: În pereţii boxei erau trei orificii. 90
6.3 Background predicate mate/6 . 106

v

List of Tables

2.1 LFG Grammatical functions . 8

5.1 Features included in POS tags. Type refers to subcategories of parts of
speech such as e.g. common and proper for nouns, or main, auxiliary
and semiauxiliary for verbs. For details see (Civit, 2000). 50

5.2 C-structure parsing performance. 50
5.3 Cast3LB function labeling performance for gold-standard trees (Node

Span) . 54
5.4 Cast3LB function labeling performance for parser output (Node Span:

correctly parsed constituents) . 54
5.5 Cast3LB function labeling performance for parser output (Headword) . 54
5.6 Statistical significance testing results on for the Cast3LB tag assignment

on parser output. 55
5.7 LFG F-structure evaluation results (preds-only) for parser output 55
5.8 Simplified confusion matrix for SVM on test-set gold-standard trees. The

gold-standard Cast3LB function labels are shown in the first row, the
predicted tags in the first column. So e.g. suj was mistagged as cd in 26
cases. Low frequency function labels as well as those rarely mispredicted
have been omitted for clarity. 56

5.9 C-structure parsing performance for Cast3LB 58
5.10 C-structure parsing performance for AnCora 59
5.11 Cast3LB function labeling performance for parser output (Node Span:

correctly parsed constituents) . 59
5.12 AnCora function labeling performance for parser output for correctly

parsed constituents . 59
5.13 LFG F-structure evaluation results (preds-only) for parser output for

Cast3LB . 60
5.14 LFG F-structure evaluation results (preds-only) for parser output for

AnCora . 60
5.15 Function labels in the English and Chinese Penn Treebanks 62
5.16 Instance counts and instance overlap against test for the English Penn

Treebank training set . 66
5.17 Mean Hamming distance scores for the English Penn Treebank training

set . 67
5.18 Function labeling evaluation on parser output for WSJ section 23 - La-

beled Node Span . 68

vi

5.19 Function labeling evaluation on parser output for WSJ section 23 - Head-
word . 69

5.20 Per-tag performance of baseline and when training on reparsed trees -
Labeled Node Span . 69

5.21 Function labeling evaluation for the CTB on the parser output for the
development set . 70

5.22 Function labeling evaluation for the CTB on the parser output for the
test set . 70

6.1 Morphological synthesis and analysis performance in (Manandhar et al.,
1998) . 75

6.2 Results for task 1 in Stroppa and Yvon (2005) 78
6.3 Results for task 2 in Stroppa and Yvon (2005) 78
6.4 Feature notation and description for lemmatization 81
6.5 Example features for lemmatization extracted from a Spanish sentence . 82
6.6 Lemmatization evaluation for eight languages 83
6.7 Lemmatization evaluation for eight languages – unseen word forms only 84
6.8 Comparison of reverse-edit-list+SVM to Freeling on the lemmati-

zation task for Spanish . 85
6.9 Comparison of reverse-edit-list+SVM to Freeling on the lemmati-

zation task for Catalan . 85
6.10 Statistical significance test . 86
6.11 Feature notation and description for the basic configuration 89
6.12 Evaluation results with the basic model with small training set for

Spanish, Romanian and Polish . 92
6.13 Evaluation results with a full training set for Spanish and Polish. Num-

bers in brackets indicate accuracy improvement over the same model
trained on the small training set . 93

6.14 Evaluation results of the basic+dict model with the small training set
with lexicons of various sizes for Spanish. Numbers in brackets indicate
accuracy improvement over the basic model with the same training set 97

6.15 Evaluation results of the basic+dict model with the full training set
with lexicons of various sizes for Spanish. Numbers in brackets indicate
accuracy improvement over the basic model with the same training set 97

6.16 Evaluation results for Freeling with two different dictionaries 98
6.17 Evaluation results for Morfette in two configurations. The numbers in

brackets indicate improvement over Freeling with dict-large 99
6.18 Results for the basic feature set on small training set, using the edit-

tree as lemma class for Polish. Numbers in brackets indicate improve-
ment over the same configuration with reverse-edit-list 101

6.19 Results for the basic feature set, using the edit-tree as lemma class
for Welsh and Irish. Numbers in brackets indicate improvement over the
same configuration with reverse-edit-list. 103

6.20 Features for lexical analysis model . 105
6.21 Features for lexical synthesis model . 105
6.22 Morphological analysis results - all . 106
6.23 Morphological synthesis results - all . 106

vii

6.24 Morphological analysis results - seen . 106
6.25 Morphological analysis results - unseen 107
6.26 Morphological synthesis results - seen 107
6.27 Morphological synthesis results - unseen 107

viii

Acknowledgments

The work I carried out during the 3 years of my PhD at DCU would not have been
possible without the support of many colleagues and friends. First, I’d like to say many
thanks to Josef van Genabith who was an enthusiastic supervisor, always interested in
my ideas and ready to suggest new ones whenever I got stuck. Josef’s endless optimism
and positive attitude were a most welcome antidote to my doubts and skepticism.

There are two people who helped shape my thinking and my work in multiple ways:
my co-authors and friends Nicolas Stroppa and Georgiana Dinu. I am grateful to Nico
for sharing with me his expertise in both the technical details of, and the guiding con-
cepts behind Machine Learning during innumerable coffee breaks. Georgiana served as
a tireless sounding board: I would have never been able to fully flesh out my ideas with-
out constantly sharing them with her and hearing what she thought. Georgiana also
read parts of the thesis and helped remove many mistakes and unclear points. I would
also like to thank both Nicolas and Georgiana for the effort they put in collaborating
with me on joint papers: it was a pleasure to work with you.

I would also like to thank the co-members of the GramLab project: Ines Rehbein,
Yuqing Guo, Masanori Oya and Natalie Schluter, as well as other researchers at NCLT:
Joachim Wagner, Yvette Graham and Jeniffer Foster. Thanks for talking to me, going
through the routine of weekly meetings together, listening and giving suggestions at
seminar talks and dry-runs! Other researches who I would like to thank for their helpful
suggestions and/or generally inspiring conversations are Aoife Cahill, John Tinsley and
Augusto Jun Devegili.

Özlem Çetinoǧlu helped to make this thesis better by being always ready to listen
to me and offer advice. She also proof-read parts of the text and helped to clarify it.

A special round of thanks goes to two of my friends and colleagues at DCU: Bart
Mellebeek and Djamé Seddah. They were great colleagues, always ready to listen and
help out with research questions. They are also my best friends, and doing a PhD in
Dublin would be a less rewarding and duller experience without all the great times we
had together: thanks guys!

I’d like to say a big thank you to Eva Mart́ınez Fuentes who put up with, and even
shared and enjoyed the bizarre interests and social life of a PhD student. Thank you
for your support and friendship.

The final few months of a PhD program are a notoriously difficult time: they were
made much more enjoyable by the endless stimulating chats about science, life and
everything with Anke Dietzsch. There is nothing better to renew one’s energies than
the company of a smart biologist: thank you Anke.

Finally, I would like to express my gratitude to the Science Foundation Ireland who
supported my research with grant 04/IN/I527.

ix

Abstract

Data-driven grammar induction aims at producing wide-coverage grammars of human
languages. Initial efforts in this field produced relatively shallow linguistic representa-
tions such as phrase-structure trees, which only encode constituent structure. Recent
work on inducing deep grammars from treebanks addresses this shortcoming by also
recovering non-local dependencies and grammatical relations. My aim is to investigate
the issues arising when adapting an existing Lexical Functional Grammar (LFG) induc-
tion method to a new language and treebank, and find solutions which will generalize
robustly across multiple languages.

The research hypothesis is that by exploiting machine-learning algorithms to learn
morphological features, lemmatization classes and grammatical functions from tree-
banks we can reduce the amount of manual specification and improve robustness, ac-
curacy and domain- and language -independence for LFG parsing systems.

Function labels can often be relatively straightforwardly mapped to LFG grammat-
ical functions. Learning them reliably permits grammar induction to depend less on
language-specific LFG annotation rules. I therefore propose ways to improve acquisition
of function labels from treebanks and translate those improvements into better-quality
f-structure parsing.

In a lexicalized grammatical formalism such as LFG a large amount of syntactically
relevant information comes from lexical entries. It is, therefore, important to be able
to perform morphological analysis in an accurate and robust way for morphologically
rich languages. I propose a fully data-driven supervised method to simultaneously
lemmatize and morphologically analyze text and obtain competitive or improved results
on a range of typologically diverse languages.

Chapter 1

Introduction

Natural Language Processing (NLP) seeks to develop methods which make it possible
for computers to deal with human language texts in a meaningful and useful fashion.
Unstructured textual information written by and for humans is ubiquitous and being
able to make sense of it in an automated fashion is highly desirable. Many NLP
applications can benefit if they are able to automatically associate syntactic and/or
semantic structure with natural language text, i.e. to parse it.

1.1 Shallow vs Deep Parsing

Traditionally, approaches to parsing within NLP fell into two types. First, parsing
can be performed by having expert linguists develop a computational grammar for a
given language, which can then be used by a parsing engine to assign a set of analyses
to a sentence. Typically, such a grammar would be based on some sufficiently formal
and explicit theory of language syntax and semantics, and would provide linguistically
well-motivated and rich representations of syntactic structure.

Second, grammars, or more generally parsing models, can be extracted automati-
cally from a large corpus annotated by expert linguists (a treebank). Typically such
a grammar would tend to be a relatively simple, relatively theory-neutral, and would
provide rather shallow syntactic representations.1 However it would have access to
frequency counts of different structures in the training corpus, which can be used for
managing ambiguities pervasive in natural language syntax.

1.2 Deep Data-Driven Parsing

In more recent years significant effort has been put into overcoming this dichotomy and
superseding the tradeoffs it imposes. A number of systems have been developed which
combine the use of linguistically sophisticated, rich models of syntax and semantics with
the data-driven methodology informed by probability theory and machine-learning.
Such “deep data-driven parsing” approaches combine the best of both worlds: they

1In this context, by “shallow parsing” I mean finding a basic constituent structure for a sentence.
I do not mean partial parsing, or chunking, where only a simple flat segmentation is imposed on the
sentence.

1

offer wide-coverage and robustness coupled with linguistic accuracy and depth. The
developments in this area come in a few flavors.

First, shallow probabilistic models have been “deepened”. Many of the complexities
which make natural language syntax difficult, such as long-distance dependencies, were
ignored in shallow approaches early on; however, this need not be the case: treatment
of wh-extraction was incorporated into the Model 3 of Collins parser (Collins, 1997).

Second, many ways have been found to “enrich” the output of shallow parsers with
extra information. Examples include adding function labels (to be discussed in Chapter
5) or resolving long-distance dependencies, e.g.: (Johnson, 2001; Levy and Manning,
2004; Campbell, 2004; Gabbard et al., 2006).

Third, parsers using hand-written grammars have been equipped with probabilistic
disambiguation models trained on annotated corpora (Riezler et al., 2001; Kaplan et al.,
2004; Briscoe and Carroll, 2006). This does not solve the problem of limited coverage
those grammars have, but does provide a principled way to rank alternative analyses.
Limited coverage has been addressed in these systems by implementing robustness
heuristics such as combining partial parses as described by Kaplan et al. (2004).

Finally, standard annotated corpora have been used to train data-driven parsers for
deep linguistic formalisms such as Tree Adjoining Grammar (Xia, 1999), Lexical Func-
tional Grammar (Cahill et al., 2002, 2004), Head-driven Phrase Structure Grammar
(Miyao et al., 2003; Miyao and Tsujii, 2005) and Combinatory Categorial Grammar
(Clark and Hockenmaier, 2002; Clark and Curran, 2004).

1.3 Multilingual Treebank-Based LFG

The research described in this thesis was carried out in the context of the GramLab
project which aims to develop resources for wide-coverage multilingual Lexical Func-
tional Grammar parsing.

Initial work on data-driven LFG parsing for English was done by Cahill et al. (2002,
2004) at Dublin City University (DCU). LFG has two parallel syntactic representa-
tions: constituency trees (c-structures) and representations of dependency relations
(f-structures). The DCU approach develops an LFG annotation algorithm which adds
information about LFG grammatical functions and other attributes to English Penn II
treebank-style trees. These annotations can be used to build LFG-style representations
of dependency relations (f-structures). The approach builds LFG representations in
two steps: c-structures are constructed by a probabilistic parsing model trained on a
treebank, then the trees are automatically annotated and the f-structures are built. It
has been demonstrated that this method can successfully compete with parsing sys-
tems which use large hand-written grammars developed over many years, on their own
evaluation data (Burke et al., 2004a; Cahill et al., 2008).

This empirical success provided the motivation for adapting the approach to other
languages. Appropriate training resources, i.e. large, syntactically annotated treebanks
are now available for many languages. However, the challenge of multilinguality is
not only the availability of resources but also the variation across human languages.
Languages differ along a number of dimensions, and often trade off complexity in one
linguistic subsystem for simplicity in another.

Computational language processing follows the standard scientific practice of re-

2

ductionism, and adopts simplifying assumptions about its object of study that may in
general be untrue but enable incremental progress to be made. Such simplifications are
often unstated and may be difficult to identify until our methods are stress-tested on
diverse data. And multilingual processing is one scenario where our assumptions may
need to be revised.

One aspect of the research described in this thesis is adapting the DCU treebank-
based LFG parsing architecture to the Spanish Cast3LB treebank. This exercise, as
well as work on other languages by members of the GramLab project, illuminated
a number of linguistic divergences relevant for processing. The two most relevant
divergences between English and a language such as Spanish are along the dimension
of configurationality and morphological richness.

While English has highly constrained constituent order, and grammatical function
of constituents is highly determined by syntactic configuration, in Spanish the order
of main sentence constituents is governed by soft preferences depending on multiple
factors, and grammatical function is less predictable from configuration.

The syntactic rigidity of English goes hand in hand with little inflectional morphol-
ogy. Spanish is morphologically much richer than English (although of course Spanish
morphology is still quite limited compared to Slavic languages or to Arabic).

The syntactic flexibility of a language like Spanish makes it problematic to rely
heavily on a hand-written annotation algorithm which attempts to assign LFG gram-
matical function annotations to constituents in a parse tree. What is needed is a method
which draws information from many sources, such as local configuration, word order,
morphological features, lexical items, semantic features (e.g. animacy) and combines
the evidence to arrive at the final decision.

Rich morphology makes it necessary to use a step of morphological analysis more
complex than simple Part-of-Speech (POS) tagging prior to syntactic analysis. Ac-
curate morphological analysis is important for a deep lexicalized formalism like LFG
where morphological features such as agreement and case are used to constrain possible
syntactic analyses, and where normalized, lemmatized forms of lexical items are used
to build dependency relations.

Obviously we would like to learn to perform those two tasks, namely assigning
grammatical functions to nodes in parse trees and assigning morphological features and
lemmas to words in context, from training data for a particular language. Treebanks are
annotated with information which can be exploited to learn those tasks: they typically
enrich phrase-structure annotation with some grammatical function labels and some
semantic role labels. They are also typically morphologically analyzed and lemmatized
(and additionally there are other morphologically analyzed corpora that can be used
for training).

The driving idea in this thesis is to improve data-driven LFG parsing by making it
more data-driven: learn more, and hardcode less. Learning to reliably assign function
labels from training data shifts the weight away from a hand-written LFG annotation
algorithm. For a language like Spanish, an annotation algorithm without access to
accurate function labels would work very poorly: in this case learning from data is
a necessity rather than just an improvement. Similarly, for languages with pervasive
inflectional phenomena, accurate and complete morphological analysis is a must. Even
though this can, and has been, achieved by hand writing finite-state analysers, here I

3

will adhere to the data-driven approach and determine how much and how well can be
learned from annotated data.

1.4 Machine Learning

Machine Learning (ML) is the solution to many of the issues outlined in the previous
section: supervised learning methods allow us to find in our training data correlations
which can be exploited for predicting the phenomena we are interested in, such as a
constituent’s grammatical function, or the morphological features of a word in context.
We extract such hints, or features, from the data, and learn how much and in what way
they contribute to the final prediction; in other words we learn the model parameters.
When we apply the learned model to new data, we obtain a prediction, possibly with
an associated probability or other score indicating how confident we can be in it, which
means we have a well-motivated means of predicting combinations of outcomes, such
as e.g. sequences of morphological labels, using standard techniques from probability
theory.

The most explored setting within supervised machine learning is classification,
where the task is to use a collection of labeled training examples in order to learn
a function which can predict labels for new, unseen examples. Despite its simplicity
this paradigm is remarkably versatile and can be applied to a wide variety of prob-
lems. It can also be extended to learn functions with more complex codomains, such
as sequences of labels.

The ML algorithms used in this thesis fall into the class of discriminative methods,
which model the dependence between the unobserved variable y (the output) on the
observed variable x (the input); in probabilistic terms they describe the conditional
probability distribution p(y|x), rather than the joint distribution p(x, y) used by gen-
erative models. Discriminative approaches allow us to define rich, fine-grained descrip-
tions of the input objects in terms of arbitrary, possibly non-independent features. This
makes discriminative modeling flexible and empirically successful in countless domains,
including many NLP applications.

In the research described here I use machine learning techniques for classification
and for sequence labeling to enhance the two crucial aspects of data-driven LFG parsing
discussed in the previous section: function labeling, and morphological analysis.

1.5 The Structure of the Thesis

The presentation of my research is organized as follows:

Chapter 2 gives a brief introduction to the aspects of Lexical Functional Grammar
most relevant to parsing natural language, and proceeds to give an overview of existing
work on data-driven treebank-based LFG parsing.

Chapter 3 is a high-level overview of the main aspects of supervised machine learn-
ing. I describe feature vector representations, and introduce several commonly used

4

learning algorithms, starting with the Perceptron and continuing with k-NN , Maxi-
mum Entropy and Support Vector Machines. Finally I briefly discuss approaches to
sequence labeling.

Chapter 5 presents my work on learning models for assigning function labels to
parser output. I start by giving a summary of my work on adapting the LFG parsing
architecture to Spanish which was the main motivation for developing a classifier-based
function labeler. In Section 5.2 I then describe experiments with three ML methods on
the Spanish Cast3LB treebank, report the evaluation results and error analysis; I also
briefly describe experiments on the more recent AnCora Spanish treebank. In Section
5.3 I describe an improved method of learning a function labeling model by making use
of parser output rather than original treebank trees for training, and report evaluation
results using such a model on English and Chinese.

Chapter 6 deals with the task of learning morphological analysis models for lan-
guages with rich inflectional morphology. I start by reviewing existing research on
supervised learning of morphology. I discuss in some detail approaches based on In-
ductive Logic Programming (ILP) and Analogical Learning (AL), as well as a number
of other methods. I introduce a classifier-based method to learn lemmatization models
by means of using edit scripts between form-lemma pairs as class labels to be learned.
I report on experiments using this method on data from six languages. I proceed to
introduce the Morfette system which uses the Maximum Entropy approach to learn
a morphological tagging model and a lemmatization model and combines their predic-
tions to assign a sequence of morphological tags and lemmas to sentences. I report on
experiments using this system on Spanish, Romanian and Polish. Finally, I compare
the performance of the classifier-based method to morphological analysis and synthesis
with an ILP implementation Clog on data from the Multext-EAST corpus.

Chapter 7 summarizes the main contributions of this thesis and discusses ideas for
refining and extending the research described in the preceding chapters.

1.6 Summary of Main Results

The main results described in Chapters 5 and 6 are the following:

Spanish treebank-based LFG parsing

• I have overhauled and substantially extended the range of phenomena treated in
the Spanish annotation algorithm. I also revised and extended the gold standard
which now includes 338 f-structures. This served two purposes: to identify areas
where the existing LFG parsing architecture for English needed further work to
make it less language dependent and more portable, and to enable the work on
developing and evaluating a function labeling model for Spanish.

5

Function labeling

• I have developed a function labeler for Spanish which achieves a relative error
reduction of 26.73% over the previously used method of using the c-structure
parser to obtain function-labeled trees. The use of this model in the LFG parsing
pipeline also improves the f-structure quality as compared to the baseline method.

• I have described a training regime for an SVM-based function labeling model
where trees output by a parser are used in combination with treebank trees in
order to achieve better similarity between training and test examples. This model
outperforms all previously described function labelers on the standard English
Penn II treebank test set (22.73% relative error reduction over previous highest
score).

Morphological analysis

• I have developed a method to cast lemmatization as a sequence labeling task.
It relies on the notion of edit script which encodes the transformations needed
to perform on the word form to convert it into the corresponding lemma. A
lemmatization model can be learned from a corpus annotated only with lemmas,
with no explicit part-of-speech information.

• I have built the Morfette system which performs morphological analysis by learn-
ing a morphological tagging model and a lemmatization model, and combines the
predictions of those two models to find a globally good sequence of MSD-lemma
pairs for a sentence.

• I have shown that integrating information from morphological dictionaries into
the Maximum Entropy models used by Morfette is straightforward and can
substantially reduce error, especially on words absent from training corpus data.

• I have developed an instantiation of the edit script, the Edit Tree, which im-
proves lemmatization class induction in the case where inflectional morphology
affects word beginnings in addition to word endings, and have shown that the
use of this edit script version results in statistically significant error reductions
on test data in Polish, Welsh and Irish.

• I compared the proposed morphology models against existing systems (Freeling
and Clog): in both cases my proposed models showed superior or competitive
performance

6

Chapter 2

Treebank-Based Lexical

Functional Grammar Parsing

In this chapter I provide an overview of the Lexical Functional Grammar (LFG) and
discuss approaches to parsing natural language within the LFG framework. I will
concentrate on the aspects of LFG most relevant to computational implementations.

2.1 Lexical Functional Grammar

Lexical Functional Grammar is a formal theory of language introduced by Bresnan
and Kaplan (1982) and further described in (Bresnan, 2001; Dalrymple, 2001). The
main focus of theoretical linguistics research within LFG has been syntax. LFG syntax
consists of two levels of structure.

C-structures The constituent structure (c-structure) is a representation of the hi-
erarchical grouping of words into phrases. It is used to represent constraints on word
order and constituency; the concept of c-structure corresponds to the notion of context-
free-grammar parse-tree used in formal language theory.

F-structures The level of functional structure (f-structure) describes the grammat-
ical functions of constituents in sentences, such as subject, direct object, sentential
complement or adjunct. F-structures are more abstract and less variable between lan-
guages than c-structures. They can be thought of as providing a syntactic level close
to the semantics or the predicate-argument structure of the sentence. F-structures are
represented in LFG by attribute-value matrices. The attributes are atomic symbols;
their values can be atomic, they can be semantic forms, they can be f-structures, or
they can be sets of f-structures, depending on the attribute. Formally f-structures are
finite functions whose domain is the set of attributes and the codomain is the set of
possible values. Table 2.1 lists the grammatical functions most commonly assumed
within LFG.

Those two levels of syntactic structure are related through the so-called projection
architecture. Nodes in the c-structure are mapped to f-structures via the many-to-one
projection function φ.

7

Attribute Meaning

subj subject
obj direct object
obj2 indirect object (also objθ)
obl oblique or prepositional object
comp sentential complement
xcomp non-finite clausal complement
adjunct adjunct

Table 2.1: LFG Grammatical functions

Functional equations An LFG grammar consists of a set of phrase structure rules
and a set of lexical entries, which specify the possible c-structures. Both the phrase
structure rules and the lexical entries are annotated with functional equations, which
specify the mapping φ. The functional equations employ two meta-variables, ↓ and ↑
which refer to the f-structure associated with the current (self) node and the f-structure
associated with its mother node, respectively. The = symbol in the functional equations
is the standard unification operator.

(2.1)
S −→ NP VP

(↑ subj) = ↓ ↑ = ↓
The phrase structure rule in (2.1) is interpreted as follows: the node S has a left
daughter NP and a right daughter VP, the f-structure associated with S unifies with
the f-structure for VP, while the value of the subj attribute of the f-structure for S
unifies with the f-structure associated with the NP.

The notation (f subj) denotes the f-structure f applied to the attribute subj, i.e.
the value of that attribute in f . Function application is left-associative so (f xcomp
subj) is the same as ((f xcomp) subj) and denotes the value of the subj attribute in
the f-structure (f xcomp).

Figure 2.1 shows the c-structure and the f-structure for the English sentence But
stocks kept falling. The nodes in the c-structure are associated with functional equa-
tions. The equations on the phrasal nodes come from the phrase-structure rules; the
ones on the terminals come from lexical entries. The accompanying f-structure is the
minimal f-structure satisfying the set of constraints imposed by this set of equations.
Two of the sub-f-structures are connected with a line; this notation is a shorthand
signifying that the f-structures are identical.

Semantic forms The values of the pred attribute are so called semantic forms: how-
ever, rather than representing semantics they correspond to subcategorization frames
for lexical items. They encode the number and the grammatical function of the syn-
tactic arguments the lexical item requires. For example ‘fall〈subj〉’1 means that fall

1In ‘keep〈xcomp〉subj’ the subj function is outside the brackets: this notation is used to indicate
that the “raised” subject, which keep shares with its xcomp argument; keep does not impose semantic
selectional restrictions on this raised subject.

8

S

↓∈(↑adjunct)
CC

But
(↑pred)=‘but’

(↑subj)=↓
NP

↑=↓
N

stocks
(↑pred)=‘stock’

(↑num)=pl

↑=↓
VP

↑=↓
V

kept
(↑pred)=‘keep〈xcomp〉subj’

(↑subj)=(↑xcomp subj)

(↑xcomp)=↓
VP

↑=↓
V

falling
(↑pred)= ‘fall〈subj〉’





























adjunct

{

[

pred ‘but’
]

}

subj

[

pred ‘stock’

num pl

]

pred ‘keep〈xcomp〉subj’

xcomp

[

subj []

pred ‘fall〈subj〉’

]





























Figure 2.1: LFG representation of But stocks kept falling

9

needs one argument, with the grammatical function subj. Semantic forms are uniquely
instantiated, i.e. they should be understood as having an implicit index: only semantic
forms with an identical index are considered equal. This ensure that semantic forms
corresponding to two distinct occurrences of a lexical item in a sentence cannot be
unified. For example in the f-structure for the sentence:

(2.2) The big fish devoured the little fish.

the two semantic forms ‘fish’1 and ‘fish’2 are distinct and cannot be unified.
The line connecting two f-structures to signify that they are identical also implies

that the implicit indices in the semantic forms are identical.

Well-formedness of f-structures F-structures have three general well-formedness
conditions imposed on them (following Bresnan and Kaplan (1982)).

Completeness An f-structure is locally complete iff it contains all the governable
grammatical functions that its predicate subcategorizes for. An f-structure is
complete iff all its sub f-structures are locally complete. Governable grammatical
functions correspond to possible types of syntactic arguments and include subj,
obj, obj2, xcomp, comp, obl.

Coherence An f-structure is locally coherent iff all its governable grammatical func-
tions are subcategorized for by its local predicate. An f-structure is coherent iff
all its sub f-structures are locally coherent.

Consistency In a given f-structure an attribute can have only one value.2

Together these constraints ensure that all the subcategorization requirements are
satisfied and that no non-governed grammatical functions occur in an f-structure.

Long-distance dependencies and functional uncertainty Some phenomena in
natural languages such as topicalization, relative clauses and wh-questions introduce
long distance dependencies. Those are constructions where a constituent can be arbi-
trarily distant from its governing predicate.

(2.3) What1 did she never suspect she would have to deal with ⋄1?

In an LFG analysis of (2.3) the interrogative pronoun what has the grammatical
function focus in the top-level f-structure and at the same time the function obj in
the embedded f-structure corresponding to the prepositional phrase introduced by with
at the end of the sentence. In principle an unbounded number of tensed clauses can
separate the interrogative pronoun from its governing predicate.

In order to express such constraints involving unbounded embeddings, LFG resorts
to functional equations with paths through the f-structures written as regular expres-
sions. Such equations are referred to as functional uncertainty equations. For example
to express the constraint that the value of the focus attribute is equal to the value of
the obj attribute arbitrarily embedded in a number of comps or xcomps one would
write

(f focus) = (f {comp | xcomp}∗ obj) .

2This constraint follows automatically if we regard f-structures as functions.

10

The vertical bar operator | is indicates the disjunction of two expressions, while the
Kleene star ∗ operator has the standard meaning of a string of 0 or more of the preceding
expressions.

2.2 LFG parsing

In this section I briefly review common approaches to parsing natural language with
LFG grammars and then describe in some detail the wide-coverage treebank-based LFG
acquisition methodology developed at DCU. This will serve as background to my own
work on integrating machine learning techniques within this approach.

Computational implementations of LFG and related formalisms such as Head-
Driven Phrase-Structure Grammar (HPSG) are sometimes described as deep grammars.
This term highlights the fact that computational work within these frameworks aims at
parsing natural language text into information-rich, linguistically plausible representa-
tions which account for complex phenomena such as control/raising and long-distance
dependencies. They provide a level of syntax abstract and rich enough for interfacing
with semantics. Until relatively recently, data-driven methods for processing language,
such as parsers based on Probabilistic Context Free Grammars (PCFG), did not pro-
vide such rich structures but rather more “shallow”, “surfacy” representations such as
basic constituency trees.

The level of f-structures in LFG is intermediate between a basic constituency tree
and a semantic representation. The higher level of abstraction as compared to c-
structures can be useful for applications such as e.g. Question Answering, where we
would like to have access to some approximation of argument structure. Since the f-
structures abstract over surface word order they are more appropriate for this purpose:
e.g. two English sentences differing only in adverb placement will receive the same
f-structure representation even though their c-structures differ. This benefit is even
more pronounced in languages with flexible constituent order, where e.g. core verb
arguments can appear pre- or postverbally. Additionally, at f-structure level, many
dependencies between predicates and their displaced arguments, such as in questions,
relative clauses or topicalization, are resolved, which further eases the task of matching
similar meanings expressed by means of alternative constructions.

Initial work on parsing with deep grammars was based on hand-writing the gram-
mars and using a parsing engine specialized to the grammatical formalism in question
to process sentences. In the context of LFG, the Pargram project (Butt et al., 2002)
has been developing wide-coverage hand-written grammars for a number of languages,
using the XLE parser and grammar development platform (Maxwell and Kaplan, 1996).
Such grammars have been subsequently coupled with stochastic disambiguation models
trained on annotated treebank data which choose the most likely analysis from among
the ones proposed by the parser (Riezler et al., 2001; Kaplan et al., 2004).

2.2.1 Treebank-based LFG parsing

Hand-written LFG grammars such as those developed for the Pargram project can
offer relatively wide coverage. However, their development takes a large amount of
time dedicated by expert linguists, and the coverage still falls short in comparison to
that of shallower, probabilistic parsers which use treebank grammars.

11

This bottleneck caused by manual grammar writing has motivated an alternative
approach to deep parsing, inspired by probabilistic treebank-based parsers. The idea is
to exploit a treebank and automatically convert it to a deep-grammar representation.
Most research in this framework has used the English Penn II treebank (Marcus et al.,
1994). In addition to constituency trees this treebank employs a number of extra
devices to provide information necessary for the recovery of predicate-argument-adjunct
relations. The most important ones are traces coindexed with phrase structure nodes,
and function labels indicating grammatical functions and semantic roles for adjuncts.

Early work on converting the Penn treebank to a deep-grammar representation and
using this resource to build a data-driven deep parser was carried out within the Tree
Adjoining Grammar (TAG) formalism (Xia, 1999). Subsequently, similar resources
were developed for other grammar formalisms: LFG (Cahill et al., 2002, 2004), HPSG
(Miyao et al., 2003; Miyao and Tsujii, 2005) and Combinatory Categorial Grammar
(CCG) (Clark and Hockenmaier, 2002; Clark and Curran, 2004).

DCU LFG parsing architecture

The treebank-based parsing research within the HPSG and CCG frameworks follows
a similar pattern: the original treebank trees are semi-automatically corrected and
modified to make them more compatible with the target linguistic representations.
Then a conversion algorithm is applied to the treebank trees, and produces as a results
a collection of HPSG signs or CCG derivations. This transformed treebank is then
used to extract a grammar and train a stochastic disambiguation model which works
on packed chart representations (feature forests (Miyao and Tsujii, 2002, 2008)) and
chooses the most likely parse from among the ones proposed by a dedicated HPSG or
CCG parser.

The projection architecture of LFG with the two levels of syntactic representation
linked via functional annotations on phrase structure rules facilitates an alternative,
more modular implementation strategy. The parsing process is divided into two steps:
c-structure parsing and f-structure construction.

Treebank annotation A key component in the DCU LFG parsing architecture is
the LFG annotation algorithm. It is a procedure which walks the c-structure trees
and annotates each node with functional equations. The result is an annotated c-
structure tree such the one depicted in Figure 2.1. Of course the structure of the tree
underdetermines the set of constraints that defines the corresponding f-structure, so the
annotation algorithm uses additional sources of information to produce the equations:

Head table. This table specifies, for each local subtree of depth one, which constituent
is the head daughter. Similar tables are used in treebank-based lexicalized proba-
bilistic parsers, and the annotation algorithm for the English Penn treebank uses
an adapted version of the head table from Magerman (1994).

Function labels. Function labels in the English Penn treebank annotate some nodes
with their grammatical function, and label some adjuncts with semantic roles.
Grammatical function labels are very useful since they can be mapped straight-
forwardly to LFG functional equations.

12

Coindexed traces. Traces in the English Penn treebank provide information neces-
sary to recover predicate-argument structure, identify control/raising construc-
tions and resolve long-distance dependencies.

Integrated and pipeline models There are two alternative approaches to LFG
parsing within the general DCU architecture. The integrated model works as follows.
The original treebank trees are annotated with functional equations. This collection
of annotated trees is used to train a PCFG parser or a lexicalized probabilistic parser
such as (Collins, 1999; Charniak, 2000; Charniak and Johnson, 2005). The functional-
equation-annotated nodes are treated as atomic phrase labels and thus the parser learns
to output trees with such labels. To process new text, the annotated-treebank-trained
model is used to produce a tree. Then the function equations encoded on the labels
are collected and evaluated using a dedicated LFG constraint solver, which produces
the f-structure they define.

The pipeline model takes a more modular approach. The c-structure parsing
model (again using some off-the-shelf data driven parsing engine) is trained on original
treebank trees. When processing a new sentence, it is first parsed into a basic c-
structure tree. The annotation algorithm is run on this tree, and the resulting equations
are again evaluated to obtain an f-structure. The bare c-structure tree does not contain
function labels or traces – the annotation algorithm will still work without those but
may be less accurate. For this reason there is a module which adds function labels to
the c-structure tree.

For both the integrated and pipeline models there is a non-local dependency (NLD)
resolution module which deals with non-local phenomena such as raising/control con-
tructions and long distance dependencies. Figure 2.2 illustrates the complete LFG
parsing architecture in the pipeline version. In the work described in the rest of this
thesis I always assume the pipeline architecture: its modular design makes it easy to
improve specific components in a piecewise fashion, independently of each other. By
breaking up the task it also reduces model size and permits more fine-grained control
over the features used for each component.

Morphological analyzer The first module in the pipeline is the morphological an-
alyzer. For English, which has a reduced amount of inflectional morphology it is a
simple dictionary which associates word forms with their POS tags and lemmas. POS-
tagging is either integrated in the c-structure parser, or an external POS-tagger may
be used. The lemmas are looked up in the dictionary while running the annotation
algorithm since they are needed to construct the semantic forms. For morphologically
richer languages a more sophisticated morphology module can be beneficial: Chapter
6 describes the development of such a module for use with the LFG parsing pipeline.

C-structure parsing A c-structure parser can be any data-driven statistical parser
which can be trained on a treebank. This approach allows us to leverage advances
in parsing by using state-of-the-art components such as the parser of Charniak and
Johnson (2005). On the other hand, the use of c-structure parser within a pipeline
means that decisions are taken early, and if this component chooses a wrong tree, this
mistake will not be undone in later processing stages.

13

Figure 2.2: Pipeline LFG parsing architecture

14

Function labeler C-structures labeled with function labels allow the annotation al-
gorithm to produce more accurate functional equations. For some languages and tree-
banks they are even more important than for English – if c-structures are flat, most
syntactic information resides in the grammatical function labels. Rich function labeling
also reduces the amount of work that needs to be done within the f-structure annota-
tion algorithm, since it can simply exploit the straightforward mapping from function
labels to LFG annotations. For those reasons it is highly desirable to have an accurate
data-driven function label model. Chapter 5 discusses research on developing such a
model for the Spanish treebank and using it for Spanish LFG parsing. Additionally it
introduces a high-performing functional labeler for English, which is also trained and
evaluated on Chinese treebank data.

NLD module Prior to the application of the NLD module the LFG parser outputs
so-called proto f-structures. The grammatical functions used to analyze wh-questions,
relatives and topicalization, topic and focus are not resolved, i.e. they are not iden-
tified with f-structures at the level where they fulfill subcategorization requirements of
their governing predicate. The NLD module resolves those dependencies; the module
is described in detail in Cahill et al. (2004). In brief, the possible resolution candi-
dates are generated, and they are ranked according to the product of two scores: the
probability of the subcategorization frame given the lemma, and the probability of the
path through f-structure from the source grammatical function to the target (or a fi-
nite approximation of a functional uncertainty equation), given the source grammatical
function. Both conditional probabilities are obtained from f-structures generated for
treebank trees, via Maximum Likelihood estimates.

2.3 GramLab – Treebank-Based Acquisition of Wide-Coverage

LFG Resources

The approach to LFG grammar acquisition and parsing outlined above has been applied
mainly to the English Penn treebank. The aim of the GramLab project is to attempt
to port this architecture to other languages and treebanks. A successful adaptation of
the method would provide valuable NLP resources for those languages and would also
potentially enable multilingual applications such as cross-language information retrieval
or data-driven transfer-based machine translation.

The challenge is to investigate to what degree the methodology developed for En-
glish will work in the context of languages with possibly quite different characteristics.
The payoff is that we learn how to make language processing more robust in the face
of the variety characterizing human languages. Research withing GramLab has investi-
gated treebank-based LFG parsing for Japanese (Oya and van Genabith, 2007), Chinese
(Burke et al., 2004b; Guo et al., 2007), German (Cahill et al., 2005), French (Schluter
and van Genabith, 2007), Arabic (Al-Raheb et al., 2006) and Spanish (O’Donovan
et al., 2005; Chrupa la and van Genabith, 2006a,b).

The research described in this thesis has been carried out within the GramLab
project. I have investigated the issues arising when adapting the DCU approach to
LFG parsing to the Spanish Cast3LB treebank. The insights learned from this work
have informed my research on applying machine-learning methods to develop robust

15

language-independent morphology and function labeling modules and thus minimiz-
ing the effort that has to be devoted to developing the highly language-specific LFG
annotation algorithms.

16

Chapter 3

Machine Learning

3.1 Introduction

In this chapter I provide a brief introduction to the field of supervised machine-learning
and give an overview of several machine-learning algorithms useful in Natural Language
Processing. In Section 3.2 I present four algorithms used for classification: Perceptron,
k-nearest-neighbors, MaxEnt and Support Vector Machine. In Section 3.3 I briefly
discuss approaches to the sequence labeling task.

3.1.1 Supervised learning

In supervised learning the goal is to learn a function

h : X → Y (3.1)

where x ∈ X are inputs and y ∈ Y are outputs. The input objects are called instances,
or examples, and they can be any kind of object, depending on the particular learning
task: in NLP they could be for example documents to classify, strings of words to tag
with POS-sequences or sentences in the source language to translate into the target
language. Depending on the nature of the output space Y, learning tasks can be
categorized into several types:

• Binary classification: Y = {−1, +1}

• Multiclass classification: Y = {1, . . . ,K} (finite set of labels)

• Regression: Y = R

• Structured prediction: here the outputs in Y are complex. For example, in a
sequence labeling task such as POS-tagging, Y = {1, . . . ,K}n, i.e. the output is
a sequence of labels of length n equal to the length of the input string.

3.1.2 Feature representation

The prediction is based on the feature function Φ : X → F . The function Φ takes an
input object and extracts features which are useful in predicting the output. Generally
the feature space F most common in machine learning is F = RD, i.e. D-dimensional

17

real vector space. Specifically in NLP, the features will typically either be binary or
will be symbols rather than numbers; the details depend on the learning algorithm.

Feature binarization

For algorithms which require binary features, we can extract symbolic features from
instances and then binarize the output vectors of symbols. A common way of binarizing
features involves mapping each feature-value pair to a new feature and assigning it 1
if it is active and 0 otherwise. Thus for each original symbolic feature i we create as
many new binary features as the number of possible values for feature i; one of them
is set to 1, while all the others are 0. This gives rise to sparse binary vectors with few
non-zero elements. For a feature vector x of length d the corresponding binary vector
x′ is given by:

x′ = ([[x1 = V11
]], [[x1 = V12

]], ..., [[x1 = V1n]], ..., ..., [[xd = Vd1
]], ..., [[xd = Vdm

]]) (3.2)

where the jth element of the set of possible values for the ith feature is Vij and where

[[p]] =

{

1 if p is true

0 otherwise .

In the rest of this chapter I will concentrate on two learning tasks: classification,
that is learning to assign a label from a (small) finite set to examples, and sequence
labeling, that is assigning sequences of such labels to examples which are typically
strings of words.

3.2 Classification

3.2.1 Perceptron

One of the simplest classification algorithms is the perceptron (Rosenblatt, 1958). Like
more complex algorithms presented later in this chapter (MaxEnt and SVMs), it is a
linear classifier; i.e. in the case of binary classification, it learns the hyperplane sepa-
rating the positive and the negative examples in a multidimensional feature space. I
describe it here as a basic, easy-to-understand instance of a linear hyperplane-based
classification algorithm.

The separating hyperplane is defined by a weight vector w of size d and the bias
b: the weights w0, w1, ..., wd and the bias b correspond to the hyperplane equation
w0x0 + w1x1 + ... + wdxd + b = 0.

The decision function assigning the example to either the positive or negative class
has the following form:

f(x,w, b) = sign(w · Φ(x) + b) = sign

(

d
∑

i=1

wiΦ(x)i + b

)

(3.3)

That is, if the dot product of the weight vector and the feature vector of example x
(plus bias b) is > 0 the example is classified as positive, if it is < 0 it is classified as

18

Perceptron(x1:N , y1:N , I):

1: w ← 0; b← 0
2: wa ← 0; ba ← 0
3: c← 0
4: for i = 1...I do
5: for n = 1...N do
6: if yn(w · Φ(xn) + b) ≤ 0 then
7: w← w + ynΦ(xn); b← b + yn

8: wa ← w + cynΦ(xn); ba ← ba + cyn

9: c← c + 1
10: return (w −wa/c, b − ba/c)

Figure 3.1: Averaged Perceptron algorithm

negative.
The learning problem thus consists in learning the parameters (the weights and

the bias) from the set of training examples. The perceptron is an online learning
algorithm, i.e. it processes one training example at a time. Initially the parameters are
set to zero. If the current example is correctly classified by the current parameters then
the algorithm proceeds to the next step. If the example is misclassified, the parameters
are updated so that it is correctly classified. The algorithm iterates over the training
examples until no further updates are necessary. The algorithm eventually converges to
parameter settings that correctly classify the whole training set (if the data is linearly
separable).

A modification to the basic algorithm, the averaged perceptron is able to
achieve better generalization to unseen examples. The final parameters which the al-
gorithm returns are the average of all the hypothesized parameters encountered during
the algorithm run. An efficient implementation of the averaged perceptron algorithm
is shown in Figure 3.1 (Daumé III, 2006). It works similarly to the basic version, but in
addition to current parameters (w, b), the averaged parameters (wa, ba) are maintained
(see lines 2 and 8). When an example is incorrectly classified, in line 8 those parameters
are updated, but the update is multiplied by the averaging count c. Finally in line 10,
the algorithm returns (w−wa/c, b− ba/c), which corresponds to the average of all the
values the parameters (w, b) took.

If the data is linearly separable, there are obviously an infinite number of hyper-
planes which will separate the training examples. The solution found by the perceptron
algorithm depends on the order in which the examples are processed. Figure 3.2 shows
three solutions to the problem of separating the positive examples (blank points) from
the negative examples (filled points) found by the averaged perceptron algorithm de-
scribed above. Intuitively, some lines classify better than others: for example the dashed
blue line seems to be a better solution than the solid red line. This intuition can be
conceptualized as the notion of a margin: we want to find solutions which maximize
the distance between the separating hyperplane and the training examples. It has been
shown that a linear classifier’s generalization error to unseen test data is proportional to

19

−4 −2 0 2 4

−
4

−
2

0
2

4

x

y

y=−1x−0.5
y=−3x+1
y=69x+1

Figure 3.2: Example separating hyperplanes in two dimensions

the inverse of the margin (Vapnik, 2006; Freund and Schapire, 1998). The perceptron
algorithm does not maximize margin; an online learning algorithm based on the per-
ceptron idea which does is the Margin Infused Relaxed Algorithm (MIRA) (Crammer
and Singer, 2003). The most common maximum-margin algorithm is Support Vector
Machine discussed in Section 3.2.4.

The version of perceptron presented here can only deal with linear classification.
This limitation can be lifted by using the algorithm in conjunction with the “kernel
trick” (Aizerman et al., 1964); kernels are discussed in Section 3.2.4 in connection with
Support Vector Machines.

3.2.2 K-NN

Another simple classification learning method is the k-nearest-neighbors algorithm (Fix
and Hodges, 1951; Cover and Hart, 1967). The idea is to assign to a new example the
class label associated with the majority of instances in its neighborhood. The neigh-
borhood is determined by the distance in the multidimensional feature space induced
by the feature vectors representing the instances. The parameter k specifies how many
nearest instances form the neighborhood.

In the case of real-valued features Euclidean distance is used, i.e. the distance

20

∆(x, x′) between instances x and x′ is:

∆(x, x′) =

√

√

√

√

d
∑

i=1

(Φ(x)i − Φ(x′)i)2. (3.4)

In NLP k-NN is frequently used with symbolic features, which may encode word
forms, characters, morphological features and other non-numeric attributes. In this
case the most basic distance metric is the Hamming distance, also called overlap metric
or L1 metric. It defines the distance between two instances to be the sum of per-feature
distances; for symbolic features the per-feature distance is 0 for an exact match and 1
for a mismatch.

∆(x, x′) =
∑

i

δ(Φ(x)i, Φ(x′)i) (3.5)

where

δ(Φ(x)i, Φ(x′)i) =

{

0 if Φ(x)i = Φ(x′)i

1 if Φ(x)i 6= Φ(x′)i

(3.6)

For a vector with a mixture of symbolic and numeric values, the above definition
of per feature distance is used for symbolic features, while for numeric ones we use the
scaled absolute difference (Daelemans and van den Bosch, 2005):

δ(Φ(x)i, Φ(x′)i) =
Φ(x)i − Φ(x′)i

maxi −mini
. (3.7)

The k-NN algorithm modified to use this distance metric is referred to as IB1 (Aha
et al., 1991). Daelemans and van den Bosch (2005) interpret the k parameter differently
from the traditional meaning: instead of k nearest neighbors they consider neighbors at
k nearest distances. This makes a difference in the case where more than one instance
has the same distance to the test instance.

Feature weighting

It is very common to use the IB1 algorithm with some feature weighting method,
where the per-feature distance is multiplied by the weight of the feature for which it is
computed. That is:

∆(x, x′) =
∑

i

wiδ(Φ(x)i, Φ(x′)i) (3.8)

where wi is the weight of the ith feature. There are many ways to find a good weight
vector w. Daelemans and van den Bosch (2005) describe two entropy-based methods
and a χ2-based method.

Information gain Information gain is a measure of how much knowing the value of
a certain feature for an example decreases our uncertainty about its class, i.e. it is the
difference in class entropy with and without information about the feature value.

21

wi = H(Y)−
∑

v∈Vi

P (v)×H(Y |v) (3.9)

where wi is the weight of the ith feature, Y is the set of class labels, Vi is the set of
possible values for the ith feature, P (v) is the probability of value v, and class entropy
is H(Y) = −∑y∈Y P (y) log2 P (y), while P (Y |v) is the conditional class entropy given

that the feature value is v.1

Gain ratio Information gain tends to assign excessive weight to features with a large
number of values. For example if each instance in the union of the training set and test
set has a unique value for a certain feature, then knowing the value of this feature gives
us certainty as to the class label for the instances in the training set. However it is
useless for predicting the class of a test instance as there are no training instances with
the same value for this feature. To remedy this bias information gain can be normalized
by the entropy of the feature values, which gives the gain ratio:

wi =
H(Y)−∑v∈Vi

P (v)×H(Y |v)

H(Vi)
(3.10)

For a feature with a unique value for each instance in the training set, the entropy of
the feature values in the denominator will be maximally high, and will thus give a low
weight for this feature.

Chi-squared Daelemans and van den Bosch (2005) adapt the χ2-based attribute
selection method proposed by White and Liu (1994) as an alternative to information-
theoretic methods. The following equation defines the χ2 statistic for a problem with
k classes and m values for feature F :

χ2 =

k
∑

i=1

m
∑

j=1

Eij −Oij

Eij
(3.11)

where Oij is the observed number of instances with the ith class label and the jth value
of feature F . Eij is the expected number of such instances in case the null hypothesis,
i.e. that the feature F does not predict the class, is true. The expected value is defined
as:

Eij =
n·jni·

n··
(3.12)

where nij is the frequency count of instances with the ith class label and the jth value
of feature F , and

n·j =
k
∑

i=1

nij (3.13)

ni· =
m
∑

j=1

nij (3.14)

1Numeric values need to be temporarily discretized for this to work.

22

n·· =

k
∑

i=1

m
∑

j=0

nij (3.15)

i.e. the total number of instances. Daelemans and van den Bosch (2005) propose to
either use the χ2 values as feature weights in Equation 3.8, or alternatively to use the
shared variance measure:

SVF =
χ2

F

N × (min(k,m) − 1)
(3.16)

where k is the number of classes, m the number of values for feature F and N the
number of instances.

Distance-weighted class voting

In the basic version of the k-NN algorithm all the instances in the neighborhood are
weighted equally for computing the majority class to be assigned to a new instance.
However, we may want to treat the votes from very close neighbors as more important
than votes from more distant ones. A variety of distance weighting schemes have been
proposed to implement this idea; see (Daelemans and van den Bosch, 2005) for details
and discussion.

The k-NN algorithm, unlike the perceptron, is not a linear classifier, i.e. it does not
depend on the assumption that the data is linearly separable. The basic k-NN and its
various modifications have been referred to as lazy learners or memory-based learners.
During learning little “work” is done by the algorithm: the training instances are simply
stored in memory in some efficient manner. It is during prediction that most of the
actual computation takes place: the test instance is compared to the training instances,
the neighborhood is calculated, and the majority label assigned. In k-NN no abstraction
is performed, the model generalizes based on directly comparing the test instance with
labeled training examples. No information is discarded, all the “exceptional” and low
frequency items are still available for informing the prediction.

The k-NN algorithm is one of the Machine Learning methods used for function
labeling experiments for Spanish in Section 5.2.

3.2.3 Logistic Regression and MaxEnt

Maximum Entropy (or MaxEnt) models are linear probabilistic classifiers commonly
used in NLP. In multiclass classification they output probability distribution over class
labels. MaxEnt models correspond to logistic regression models, but are derived in
an alternative way. In this section I introduce linear and logistic regression and then
present the MaxEnt classifier as typically used in NLP.

Linear regression

In linear regression models the prediction function h introduced in Equation 3.1 is
instantiated as h : X → R, i.e. we try to build models which predict outcomes in the
set of real numbers based on example objects, or observations, in X . The prediction is
based on the features, or predictors, which are also typically real numbers. The feature

23

function Φ maps observations to vectors of predictors, i.e. Φ : X → Rd. The model is
defined by the equation:

y = w0 +

d
∑

i=1

wiΦ(x)i (3.17)

where y is the outcome, Φ(x)1..Φ(x)d are the feature values, w1..wd are the feature
weights, and w0 is the intercept (or bias). We can eliminate w0 by adding a special
Φ(x)0 feature which is always set to 1, and reduce the above equation to the dot product
between the weight vector and the feature vector:

y = w · Φ(x) (3.18)

Note the similarity to Equation 3.3 for the linear classifier: in the case of binary clas-
sification we use the sign of the dot product to assign the object to the class; for linear
regression the value of the dot product is the outcome we are predicting.

In order to learn a linear regression model we minimize the sum squared error over
the training set of M examples:

cost(w) =

M
∑

j=0

(w · Φ(x(j))− y
(j)
obs)

2 (3.19)

There is a closed-form formula for choosing the best weights w, given by:

w = (XT X)−1XTy (3.20)

where the matrix X contains training example features, and y is the vector of outcomes.

Logistic regression

In logistic regression we use the linear model to perform classification, i.e. assign prob-
abilities to class labels. For binary classification we want to predict the probability
of the instance being in the positive class given the instance: p(y = true|x). But the
predictions of a linear regression model are real numbers y ∈ R, whereas probabilities
range between 0 and 1: p(y = true|x) ∈ [0, 1]. To ensure that the response is in the
valid range we can instead predict the logit function of the probability:

ln

(

p(y = true|x)

1− p(y = true|x)

)

= w · Φ(x) (3.21)

p(y = true|x)

1− p(y = true|x)
= ew·Φ(x) (3.22)

24

Solving for p(y = true|x) we obtain:

p(y = true|x) =
ew·Φ(x)

1 + ew·Φ(x)
(3.23)

=
exp

(

∑d
i=0 wiΦ(x)i

)

1 + exp
(

∑d
i=0 wiΦ(x)i

) (3.24)

In order to learn a logistic regression model we use conditional likelihood estimation.
We choose the weights which make the probability of the observed outcomes (y) be the
highest, given the observations (x). For a training set with N examples:

ŵ = argmax
w

N
∏

i=0

pw(y(i)|x(i)) (3.25)

There is no close-form solution to this equation. It is a problem in convex optimization;
several special purpose and generic solutions are available to train those models, e.g.

• L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno method)

• gradient ascent

• conjugate gradient

• iterative scaling algorithms

Maximum Entropy Models

Logistic regression with more than two classes is referred to as multinomial logistic
regression, and also known as Maximum Entropy (MaxEnt). The MaxEnt equation
generalizes Equation 3.24 above:

p(y|x) =
exp

(

∑d
i=0 wiΦ(x, y)i

)

∑

y′∈Y exp
(

∑d
i=0 wiΦ(x, y′)i

) (3.26)

The denominator is the normalization factor usually called Z used to make the score
into a proper probability distribution:

p(y|x) =
1

Z
exp

d
∑

i=0

wiΦ(x, y)i (3.27)

Indicator features Note that in the above the feature function Φ is parameterized
for the class label y. In MaxEnt modeling typically binary indicator features are used,
which depend on the class label. Thus Φ(x, y)i ∈ {0, 1}. For example, in the case of
part of speech tagging, if the object x is the word w0 in the surrounding context, and

25

class label y = VBG, then an example feature might be:

Φ(x, y)1 =

{

1 if suffix3(w0) = ing ∧ y = VBG

0 otherwise

The model weight for this feature will indicate how strong a predictor the suffix “ing”
is for the label VBG.

Maximum Entropy and Maximum Likelihood The name Maximum Entropy
comes from the fact that solving the optimization problem for finding the multinomial
logistic regression model whose weights maximize the likelihood of the training data is
equivalent to finding the probability distribution p∗ with maximum entropy among the
set of distributions C which are consistent with the constraints imposed by the features
and the training data:

p∗ = argmax
p∈C

H(p) (3.28)

where the entropy of the distribution of discrete random variable X is given by:

H(X) = −
∑

x

P (X = x) log2 P (X = x) (3.29)

This duality was demonstrated by Berger et al. (1996). Maximizing the entropy subject
to some constraints is motivated by the well-known Occam’s razor principle: our model
should be as simple as possible while still predicting the data; in this case “simple”
is interpreted as maximally uniform, since the uniform distribution has the highest
entropy. The constraints imposed on the probability model are encoded in the features:
the expected value of each one of I indicator features fi under a model p should be equal
to the expected value under the empirical distribution p̃ obtained from the training
data:

∀i ∈ I, Ep[fi] = Ep̃[fi] (3.30)

where fi(x, y) = Φ(x, y)i. The expected value under the empirical distribution is given
by:

Ep̃[fi] =
∑

x

∑

y

p̃(x, y)fi(x, y) =
1

N

N
∑

j

fi(xj , yj) (3.31)

The expected value according to model p is:

Ep[fi] =
∑

x

∑

y

p(x, y)fi(x, y) (3.32)

However, this requires summing over all possible object - class label pairs, which is in
general not possible. Therefore the following standard approximation is used (Rosen-
feld, 1996):

Ep[fi] =
∑

x

∑

y

p̃(x)p(y|x)fi(x, y) =
1

N

N
∑

j

∑

y

p(y|xj)fi(xj , y) (3.33)

26

where p̃(x) is the relative frequency of object x in the training data; this has the
advantage that p̃(x) for unseen events is 0. The term p(y|x) is calculated according to
Equation 3.26.

Regularization Although the Maximum Entropy principle used in MaxEnt modeling
ensures that the models are maximally uniform subject to the constraints, they can still
overfit the training data, resulting in poor generalization to unseen instances. There
is a technique called regularization which results in relaxing the requirement that the
constraints be satisfied exactly and results in models with smaller weights which may
perform better on new data. Instead of solving the optimization in Equation 3.25,
repeated here in log-space form:

ŵ = argmax
w

M
∑

i=0

log pw(y(i)|x(i)), (3.34)

we solve instead the following modified problem:

ŵ = argmax
w

M
∑

i=0

log pw(y(i)|x(i)) + αR(w) (3.35)

where R is the regularizer used to penalize large weights (Jurafsky and Martin, 2008).
We can use a regularizer which assumes that weight values have a Gaussian distribution
centered on 0 and with variance σ2 (Chen and Rosenfeld, 1999). By multiplying each
weight by a Gaussian prior we will maximize the following equation:

ŵ = argmax
w

M
∑

i=0

log pw(y(i)|x(i))−
d
∑

j=0

w2
j

2σ2
j

(3.36)

where σ2
j are the variances of the Gaussians of feature weights. This modification

corresponds to using a maximum a posteriori rather than maximum likelihood model
estimation. In practice it is common to constrain all the weights to have the same
global variance, which gives a single tunable algorithm parameter, whose optimal value
can be found on held-out data or by cross-validation.

The MaxEnt algorithm is one of the Machine Learning methods used for function
labeling experiments for Spanish in Section 5.2. I also employ Maximum Entropy
models for the Morfette morphological analysis system described in Sections 6.4 and
6.5.

3.2.4 Support Vector Machines

Support Vector Machine (SVM) is a machine learning algorithm which exploits two
two key ideas: large-margin classification, and the “kernel trick”.

Large margin

The idea of large margin classification, mentioned briefly in Section 3.2.1, is both intu-
itively appealing and theoretically motivated. Intuitively, it makes sense for the decision

27

−4 −2 0 2 4

−
4

−
2

0
2

4

x

y

Figure 3.3: Separating hyperplane and support vectors

boundary to be as far away from the training instances as possible: this improves the
chance that if the position of the data points is slightly perturbed, the decision boundary
will still be correct. Results from Statistical Learning Theory confirm these intuitions:
maintaining large margins leads to small generalization error (Vapnik, 1995).

Formally, the functional margin of an instance (x, y) with respect to some hyper-
plane (w, b) is defined to be

γ = y(w · Φ(x) + b) (3.37)

Some data points will have the minimum functional margin: the functional margin
of the whole data set with respect to the hyperplane is then twice that quantity.

However, the functional margin can be made larger just by rescaling the weights by
some constant: (λw, λb) without changing the associated hyperplane. Hence we can
fix the functional margin to be 1 and minimize the norm of the weight vector (which
is equivalent to maximizing the geometric margin).

This results in the following quadratic programming optimization formulation of
the SVM learner: For linearly separable training instances ((x1, y1), ..., (xn, yn)) find
the hyperplane (w, b) that solves the optimization problem:

minimizew,b

1

2
||w||2

subject to yi(w · Φ(xi) + b) ≥ 1 ∀i∈1..n

(3.38)

This hyperplane separates the examples with geometric margin 2/||w||

28

Since SVM finds a separating hyperplane with the largest margin to the nearest
instance, this has the effect of the decision boundary being fully determined by a small
subset of the training examples, namely the nearest ones on both sides. Those instances
are the support vectors which SVM is named after.

Figure 3.3 shows the same data points as Figure 3.2. The solid line is the separating
hyperplane with the maximum margin with respect to the training data; the points on
the dotted line are support vectors.

Soft margin For datasets which are not linearly separable there will be no hyperplane
satisfying the constraints. To deal with such cases the version of SVM with soft margin
has been proposed. It works by relaxing the requirement that all data points lie outside
the margin, and introduces a penalty term which measures how much this requirement
is violated. For each offending instance there is a “slack variable” ξi which measures
how much it would have to be moved to make it obey the margin constraint. This leads
to the following modified formulation:

minimizew,b

1

2
||w||2 + C

n
∑

i=1

ξi

subject to yi(w · Φ(xi) + b) ≥ 1− ξi

∀i∈1..nξi > 0

(3.39)

where
ξi = max(0, 1 − yi(w · Φ(xi) + b))

The hyper-parameter C is the cost of margin constraint violation, used to trade off
minimizing the norm of the weight vector versus classifying correctly as many examples
as possible. As the value of C tends towards infinity the soft-margin SVM approximates
the hard-margin version.

Kernel-induced feature spaces

As presented so far the SVM algorithm finds decision boundaries only for linearly
separable data. This limitation can be removed by exploiting the “kernel trick”. The
kernel technique depends on the fact that for some linear classification algorithms,
including SVM, there exist dual formulations, where the weight vector can be expressed
as a linear combination of training examples, and the algorithm only involves computing
dot products between the test instance and training instances.

Dual form The dual formulation of the optimal hyperplane for SVM is in terms of
support vectors, where SV is the set of indices of support vectors:

f(x, α∗, b∗) = sign

(

∑

i∈SV

yiα
∗
i (Φ(xi) · Φ(x)) + b∗

)

(3.40)

The weights in this decision function are the Lagrange multipliers α∗. Points which
are not in the support vector set have no influence on the final decision. The dual

29

optimization problem has the following form:

minimize W (α) =

n
∑

i=1

αi −
1

2

n
∑

i,j=1

yiyjαiαj(Φ(xi) · Φ(xj))

subject to
n
∑

i=1

yiαi = 0 ∀i∈1..nαi ≥ 0

(3.41)

The Lagrangian weights together with the support vectors determine the separating
hyperplane parameters (w, b) as follows:

w =
∑

i∈SV

αiyiΦ(xi) (3.42)

b = yk −w · Φ(xk) for any k such that αk 6= 0 (3.43)

Kernel trick Note that both the decision function used to predict classes in Equation
3.40 and the objective function that needs to be optimized during training in Equation
3.41 only use the data points inside dot products between instances. This allows to use
the “kernel trick”, which implicitly maps the data to a higher dimensional space without
actually needing to compute the mapped vectors, by replacing each occurrence of a dot
product with a kernel function (Aizerman et al., 1964). A kernel K : Rd × Rd → R

is a function which computes the dot product of a pair of real-valued vectors in the
kernel-induced feature space. For example the quadratic kernel

K(x,x′) = (x · x′)2 (3.44)

corresponds to mapping the vectors to a quadratic-dimensional space with the function

x 7→ (x1x1, ..., x1xn, x2x1, ..., x2xn, ..., xnx1, ..., xnxn)

and then computing the dot product between them.
Data which is not separable in the original space usually becomes (more) separable

in the higher-dimensional, kernel-induced space. The geometric intuition behind this
idea is illustrated in Figure 3.4. In two dimensions the blank points are surrounded
by the black points, and thus there is no straight line separating the two classes. We
can, however, project the points into three dimensional space by using a map such as
(x1, x2) 7→ (x2

1, 2x1x2, x
2
2): the addition of a third dimension makes the two classes

easily separable by a plane.
An alternative intuition is that using kernel spaces permits us to use complex at-

tributes which model interactions between simple features of the original low-dimensional
representation. For example the quadratic kernel presented above models all conjunc-
tions of the original features, and it does so without incurring the cost of actually
explicitly computing the high-dimensional representations.

The “kernel trick” also makes it possible to work in infinite-dimensional spaces, such
as those induced by Gaussian kernels. A commonly used and empirically successful
Gaussian kernel used with SVM is the Gaussian Radial Basis Function (RBF), defined

30

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x

y

 0 2 4 6 8 10 12 14

 0
 2

 4
 6

 8
10

12
14

−30

−20

−10

 0

 10

 20

 30

x

y

z

Figure 3.4: Two dimensional classification example, non-separable in two dimensions,
becomes separable when mapped to 3 dimensions by (x1, x2) 7→ (x2

1, 2x1x2, x
2
2)

as:
K(x,x′) = exp

(

−γ|x− x′|2
)

(3.45)

where

γ =
1

2σ2

and σ2 is the variance of the Gaussian. The RBF γ parameter can found using some
model selection method such as cross-validation or held out data. As the optimal value
of the soft-margin SVM cost parameter C depends on the choice of kernel parameters,
usually the model selection has to be done jointly for C and γ (or equivalent parameters
for other kernels).

Multiclass classification

SVM is essentially a binary classifier. The most common method to perform multiclass
classification with SVM, and other binary max-margin algorithms, is to train multiple
binary classifiers and combine their predictions to form the final prediction. This can
be done in two ways:

• One-vs-rest (also known as one-vs-all): train |Y | binary classifiers and choose the
class for which the margin is the largest.

31

• One-vs-one: train |Y |(|Y | − 1)/2 pairwise binary classifiers, and choose the class
selected by the majority of them.

An alternative method is to make the weight vector, or the feature function Φ,
depend on the output y, and learn a single classifier which will predict the class with
the highest score:

y = argmax
y′∈Y

w · Φ(x, y′) + b (3.46)

Such multiclass extensions to the SVM algorithm have been proposed among others by
(Weston and Watkins, 1999; Crammer and Singer, 2001; Tsochantaridis et al., 2005).

The SVM algorithm is the best-performing Machine Learning method used for
function labeling experiments for Spanish in Section 5.2. I also employed SVM in
the function-labeling experiments described in Section 5.3, and in the context-sensitive
lemmatization work reported in Section 6.3.

3.3 Sequence Labeling

Assigning sequences of labels to sequences of some objects is a very common task
not only in NLP but also in fields such as bioinformatics. In NLP sequence labeling
encompasses tasks such as POS tagging, chunking (shallow parsing) and named-entity
recognition. In the general case, we want to learn a function h : Σ∗ → L∗ to assign
some sequence of labels from the label set L to the sequence of input elements from
the set Σ:

The most frequent, and the more easily tractable case is where each element of the
input sequence receives one label, i.e. the length of the input sequence is equal to the
length of the output sequence:

h : Σn → Ln

This constraint holds for POS or morphological tagging; in cases where it does not
naturally hold, such as chunking, we can decompose the task in such a way that it
is satisfied. A common way of doing it using an encoding such as the so-called IOB
scheme, introduced by Ramshaw and Marcus (1995), where each element receives a
label indicating whether it is the initial element of a chunk X (B-X), a non-initial
element of a chunk X (I-X) or is outside of any chunk (O).

In the following discussion I will restrict my attention to the more constrained case
of input and output being of equal lengths. For concreteness, I will use POS tagging
as a running example, where the elements of Σ are words and the elements of L are
part-of-speech tags.

Local classifier Possibly the simplest approach to sequence labeling is to simply use
a regular multiclass classifier such as those discussed in Section 3.2, and make a local
decision for each word; predictions for previous words can be used in predicting the
current word. This straightforward strategy can give surprisingly good results.

MaxEnt with beam search If the classifier can output not just a hard decision,
but a score such as a probability for a given label, then we can combine the local
predictions in a less greedy fashion. One option is to use a probabilistic classifier in

32

combination with a beam search strategy to find a good global sequence of tags. This
method is used by (Ratnaparkhi, 1996): he proposes to train a conditional Maximum
Entropy model to predict tags for words wi given their context ci: the context includes
the focus word as well as a window of preceding and following words, and the tags of
the preceding words. The probability of the sequence of tags (t1, ..., tn) is decomposed
as:

P (t1, ..., tn|c1, ..., cn) =
n
∏

i=1

P (ti|ci) (3.47)

For each word wi the beam search algorithm maintains the N (= beam size) highest
scoring tag sequences for words (w1, ..., wi−1) up to the previous word. Each of those
label sequences is combined with the current word wi to create the context ci, and the
Maximum Entropy Model is used to obtain the N probability distributions over tags
for word wi. Now we find N most likely sequences of tags up to and including word wi

by using Equation 3.47, i.e. by multiplying the probability of the sequence of tags up to
wi−1 with the probability for the tag ti given the context formed using that sequence,
and we proceed to word wi+1 if i ≤ n.

Maximum Entropy in conjunction with a specialized beam search algorithm is the
sequence labeling method which I chose for the Morfette morphological analysis sys-
tem described in Section 6.4.

A similar approach which uses the Viterbi algorithm to find the globally best se-
quence of tags instead of the beam search is discussed in the next section.

3.3.1 Maximum Entropy Markov Models

The Maximum Entropy Markov Models (MEMMs) approach to sequence labeling was
introduced by McCallum et al. (2000). The method is a combination of the Hidden
Markov Model (HMM) and the Maximum Entropy frameworks adapted to the sequence
labeling setting. A HMM is a generative model, where the probability of a tag sequence
given a sequence of words, P (T |W) is modeled as P (W |T)P (T) (via Bayes’ theorem).
In an n-order Markov model the probability of the current tag is conditioned on n
previous tags. Thus in a first-order HMM model in order to find the optimal sequence
of tags, we solve the following argmax:

T̂ = argmax
T

P (T |W)

= argmax
T

P (W |T)P (T)

= argmax
T

∏

i

P (wi|ti)
∏

i

P (ti|ti−1)

(3.48)

In a first-order MEMM the conditional probability of the tag sequence given the
word sequence is decomposed directly into the product of direct conditional probabilities
of tag given word and the previous tag:

T̂ = argmax
T

P (T |W)

= argmax
T

∏

i

P (ti|wi, ti−1)
(3.49)

33

Those local conditional probabilities are given by a maximum entropy model trained
on the true sequence of tags. During prediction, the previous tag is unknown, so the
previously predicted tag is used, and the argmax is solved using the Viterbi algorithm.

In comparison to using beam search, the advantage of using dynamic programming
is that this is guaranteed to find the globally best solution. A potential problem arises
if we want to use second or higher-order Markov models (i.e. we want to condition
the decision about the current tag on two or more previous tags). For each additional
previous label that we want to consider we need to add another dimension to the
dynamic programming matrix which may make the computational cost prohibitive.
The beam search approach avoids this issue.

3.3.2 Conditional Random Fields and other structured prediction

methods

The methods described above are usually highly successful in practical applications
such as POS tagging. However they suffer from some theoretical shortcomings. The
greedy use of local classifiers risks suffering from error propagation, where an erroneous
prediction affects the subsequent predictions for the following words. Additionally,
non-local constraints on possible sequences are not enforced.

There is also the limitation to sequence labeling; ideally one would want to have
more general methods able to learn more types of structured outputs.

Conditional Random Fields (CRF) introduced by Lafferty et al. (2001) were one
of the first approaches of type (1); this algorithm is a generalization of the Maximum
Entropy framework to structured outputs. The equation determining the probability
of a structured output y given the input x is identical to the one used for multiclass
classification in Equation 3.26:

p(y|x) =
exp

(

∑d
i=0 wiΦ(x, y)i

)

∑

y′∈Y exp
(

∑d
i=0 wiΦ(x, y′)i

) (3.50)

Thus, unlike for MEMMs, here MaxEnt is used to learn a single exponential model for
the probability distribution over the set of possible label sequences. Since the set Y
contains structures such as sequences, the challenge here is to compute the sum in the
denominator. Lafferty et al. (2001) and Sha and Pereira (2003) show that given certain
constraints on Y and on Φ (specifically Φ should obey the Markov property, i.e. no
feature should depend on elements of y that are more than the Markov length l apart)
dynamic programming techniques can be used to compute it efficiently.

The alternative to learning global probabilistic models such as CRFs is the paradigm
known as Learning and Inference, where predictions from local classifiers are taken as
input to the inference procedure which finds the globally best prediction. Work within
this framework includes (Roth, 2001; Carreras et al., 2002; Roth and Yih, 2004; Canisius
et al., 2006).

Recently several novel approaches to structured prediction have been proposed. It
is a fast-developing field of research in machine learning and a thorough discussion of
those developments is outside the scope of this chapter. Some of the more important
contributions include: structured and incremental Perceptron (Collins, 2002; Collins

34

and Roark, 2004), Maximum Margin Markov Networks (Taskar et al., 2004), SVMstruct

(Tsochantaridis et al., 2005), Searn (Daumé III, 2006), as well as research within the
discriminative reranking paradigm (Johnson et al., 1999; Collins, 2000; Shen et al.,
2003; Collins and Koo, 2005; Charniak and Johnson, 2005).

3.4 Summary

In this chapter I presented an overview of well-understood machine-learning algorithms,
used to solve binary and multiclass classification and sequence labeling tasks. I dis-
cussed several classification algorithms frequently used in Natural Language Processing.
The Perceptron, Logistic Regression (MaxEnt) and Support Vector Machines are essen-
tially linear classifiers which find a hyperplane separating the data in the feature space;
the Perceptron and the SVM can exploit the kernel trick to deal with non-linear clas-
sification. The k-nearest-neighbors algorithm is non-linear, and is based on the idea of
assigning points the same labels as the majority of their neighbors in the feature space.

Empirically the SVM algorithm tends to outperform the other methods for many
practical tasks. This high performance comes at a price: while the other algorithms
scale linearly in the number of training examples, the SVM can be O(N2) or even
O(N3), depending on the optimization algorithm used, which can make it impractical
for problems with large amounts of training data. For multiclass classification, another
consideration is the number of class labels: the performance of the k-NN algorithm is
constant with size of the class-set, while the other algorithms scale at best linearly.

I have also briefly reviewed the techniques used to perform sequence labeling. The
simplest but often effective approach is to use a classifier to predict a label at each
position in the sequence, possibly using previous predictions as input for decisions
further on in the sequence. A better-motivated alternative is to combine scores of the
local predictions to find a globally good labeling by using beam search or dynamic
programming techniques. Finally, more sophisticated structured prediction approaches
such as CRF models are able to rank global labelings directly.

Since in sequence labeling the structures to learn are relatively simple often good
results can be obtained by using simple models, which also have the benefit of being
quite efficient to train and use.

35

Chapter 4

Treebank-Based LFG Parsing

Resources for Spanish

4.1 Introduction

In this chapter I report on the work carried out on expanding the coverage of the Spanish
annotation algorithm in order to give an indication of the kind of issues involved in
porting this module to a new language and treebank, and provide background for
Section 5.2 in the next chapter.

One of the aims of my research is to test to what degree it is possible to achieve
high portability and language independence by learning as much information as possible
from annotated data. Therefore it was useful to focus on improving the LFG induction
methods for a language other than English and for which little previous work had been
carried out. I expanded the Spanish treebank-based grammar coverage and linguistic
analyses of O’Donovan et al. (2005). The revision and reworking of the Spanish LFG
induction system made it possible to experiment with learning the Cast3LB function
tags from the Spanish treebank.

4.1.1 The Cast3LB Spanish treebank

As input to the LFG annotation algorithm I use the output of Bikel’s parser (Bikel,
2002) trained on the Cast3LB treebank (Civit and Mart́ı, 2004) (compare Section 5.2.3).
Cast3LB contains around 3,500 constituency trees (100,000 words) taken from different
genres of European and Latin American Spanish. The POS tags used in Cast3LB
encode morphological information in addition to Part-of-Speech information.

Due to the relatively flexible order of main sentence constituents in Spanish, Cast3LB
uses a flat structure for the S node. There is no VP node, but rather all complements
and adjuncts depending on a verb are sisters to the gv (Verb Group) node containing
this verb. An example sentence (with the corresponding f-structure) is shown in Figure
4.1.

Tree nodes are additionally labelled with grammatical function labels. Civit (2004)
provides Cast3LB function label guidelines. Functional labels carry some of the infor-
mation that would be encoded in terms of tree configurations in languages with stricter
constituent order constraints than Spanish.

36

S

neg-NEG

no
not

gv

espere
expect

sn-SUJ

el lector
the reader

sn-CD

una definición
a definition





































































pred ‘esperar〈subj,obj〉’
neg +

tense pres

mood subjunctive

subj























spec

[

spec-form el

spec-type def

]

pred ‘lector’

gend masc

num sg

pers 3























obj

















spec

[

spec-form uno

spec-type indef

]

pred ‘definición’

gend fem

num sg





















































































Figure 4.1: On top flat structure of S. Cast3LB function labels are shown in bold.
Below the corresponding (simplified) LFG f-structure. Translation: Let the reader not
expect a definition.

37

sn

espec

da0fp0

las

di0fp0

diversas

grup.nom

sociedades

Cast3LB tree





































spec























det





















spec







pred ‘el’

num plural

gen fem







pred ‘diverso’

num plural

gen fem











































pred ‘sociedad’

num plural

gen fem

































































spec

[

spec-form el

spec-type def

]

pred ‘sociedad’

gend fem

num pl

adjunct







[

pred ‘diverso’

atype indef

]



































Gold f-structure in O’Donovan et al. (2005) Gold f-structure in current thesis

Figure 4.2: Comparison of f-structure representations for NPs

4.2 Comparison to Previous Work

Preliminary proof-of-concept research on Spanish LFG induction was carried out by
O’Donovan et al. (2005). This work created the following resources:

• Head rules for the syntactic analyses in the Cast3LB treebank, used with the
Bikel parser for c-structure parsing.

• Annotation algorithm for the Cast3LB treebank, relying heavily on function labels
from the treebank.

• Hand-corrected f-structures for 100 sentences to be used as a gold standard.

The gold standard was created by running the annotation algorithm on the tree-
bank trees and inspecting and correcting the output. The annotation algorithm was
quite basic, for most annotations relying on the function labels provided in treebank
trees. Otherwise it generated f-structures which closely mimic the constituent structure
encoded in the trees.

For my experiments on Spanish LFG parsing I decided to adopt f-structures that are
simpler, mimic c-structures less directly, and are more abstract and thus less language

38

S

sn-suj

espec

dd0fp0

esas

grup.nom

ncfp000

variedades

gv

vsip3p0

son

sa-ATR

aq0cp0

iguales

Cast3LB tree



















































subj



























spec






det







pred ‘ese’

num plural

gen fem













pred ‘variedad’

num plural

gen fem

pers 3



























pred ‘ser’

tense pres

xcomp







subj []

pred ‘igual’

num plural







































































































subj





















spec

[

spec-type def

spec-form ese

]

pred ‘variedad’

num pl

gend fem

pers 3





















pred ‘ser’

mood indicative

tense pres

predlink

[

pred ‘igual’

num pl

]















































Gold f-structure in O’Donovan et al. (2005) Gold f-structure in current thesis

Figure 4.3: Comparison of f-structure representations for copular verbs

and treebank specific. For example in my f-structures, both prenominal and postnomi-
nal adjectives are put in the adjunct set, whereas in O’Donovan et al. (2005) prenominal
modifiers are nested in the spec attribute. I have also simplified the structure of the
spec, getting rid of redundant gender and number specifications, and extra levels of
nesting due to the det attribute. For illustration, Figure 4.2 shows the Cast3LB analy-
sis for the NP las diversas sociedades (the various societies), and the two corresponding
f-structures.

I also adopted the predlink analysis for copular constructions, as opposed to the
xcomp analysis used by O’Donovan et al. (2005). Figure 4.2 compares the two analyses
for the sentence Esas variedades son iguales (These varieties are the same). Addition-
ally I implemented a variety of other more minor improvements and modifications.

In addition to the changes detailed above I also tackled three more crucial short-
comings in the O’Donovan et al. (2005)’s annotation algortihm: namely the treatment

39

of null subjects, clitic doubling, and periphrastic constructions. These enhancements
are detailed in Sections 4.3.1 and 4.3.2.

As another contribution towards LFG parsing resources for Spanish I enlarged the
set of gold-standard f-structures to all the 336 sentences in the test set (i.e. 10% of the
full treebank). This set of f-structures was built in the same manner as in O’Donovan
et al. (2005): i.e. I first extended and enhanced the annotation algorithm, which was
then run on the treebank trees. The resulting f-structures were then inspected and
hand-corrected in the cases when the algorithm did not produce the desired f-structure
representation.

4.3 Improving Spanish LFG Resources

In this section I discuss several problems which became obvious while trying to expand
the coverage of Spanish grammatical constructions and phenomena and while dealing
with the peculiarities of the Spanish treebank. The problems arising from adapting
a grammar acquisition methodology developed for one language/treebank to another
language/treebank combination fall into three broad categories:

• new phenomena and constructions, successfully treated within standard LFG:
clitic doubling, null subjects;

• new phenomena and constructions, problematic within standard LFG: clitic climb-
ing (i.e. complex predicates);

• limitations of the previous approach due to language/treebank specific assump-
tions which no longer hold: flexible constituent order and less configurational
c-structures.

4.3.1 Clitic doubling and null subjects

In Spanish pronominal clitics for Direct and Indirect Object can co-occur with non-clitic
(full NP) objects.Example (4.1) shows clitic doubling with Indirect Object, Example
(4.2) with Direct Object. The non-clitic Objects are in italics; the co-occurring clitics
are in bold. The clitics agree with the non-clitic arguments in person, number, gender
and case.

(4.1) Algo
something

parecido
similar

les
them

sucede
occurs

a
to

los
def

hombres.
men

Something similar happens to men.

(4.2) Cada
every

cual
which

lo
it

comprende
understands

eso
this

a
to

su
poss

manera.
manner

Everyone understands this in their own way.

Clitic doubling is quite common with Indirect Objects: in our treebank data in
23% of the cases where there is a full (non-clitic) Indirect Object it co-occurs with
a pronominal clitic. Clitic doubling for Direct Objects is more constrained, but still
relatively common at 1% of corpus occurrences of non-pronominal Direct Objects.

40

In clitic doubling constructions, pronominal clitics should not introduce a pred
value, as that would clash with the one introduced by the non-clitic Object. However
when clitics are not accompanied by non-clitic Objects, they should introduce pred =
‘pro’, in order to satisfy the verb’s subcategorization requirements.

I achieve this effect by means of optional equations (cf. (Andrews, 1990)). Example
4.3 below illustrates the equations associated with the dative le (Indirect Object).

(4.3) le pp3csd00

((↑ pred) = ‘pro’)
((↑ pron-type) = pers)
((↑ pron-form) = el)
(↑ case) = dat
(↑ num) = sg
(↑ pers) = 3

An optional equation (e) is a disjunction of e and true. In standard LFG the correct
disjunct is chosen as follows: in a clitic-doubling context, the first disjunct is excluded
because the pred value it introduces clashes with the one introduced by the non-clitic
Object, and thus the true disjunct applies. In non-doubling contexts, the first disjunct
applies successfully, while if the second one applies, the resulting f-structure does not
satisfy completeness because of the missing pred value.

In my implementation I do not check for completeness because the pred values
lack subcategorization frames,1 so I use a slightly different definition of optionality. An
optional equation works more like a default equation: the optional equation ((f a) = v)
holding of f-structure f is interpreted as a disjunction of the existential constraint (f a)
and the equation (f a) = v. In the clitic-doubling case the second disjunct (which
introduces the pred value) only applies if the pred value has not been contributed by
some other equation.

Another area where I use optional equations is in the treatment of null subjects (pro-
drop). In Spanish explicit subjects are often absent. Subject features such as person
and number are encoded in agreement morphology on the verb instead. When there is
no overt subject, the pred value that is needed to satisfy the verb’s subcategorization
is introduced by the inflected verb-form.

All finite verb preterminals optionally introduce a ‘pro’ subject. Example 4.4 below
illustrates the annotation associated with the inflected verb form vió (see-3SG).

(4.4) vió vmis3s0

(↑ pred)= ‘ver’
((↑ pred subj) = ‘pro’)
(↑ subj num) = sg
(↑ subj pers) = 3
(↑ subj tense) = past
(↑ subj mood) = indicative
(↑ light) = −

1The subcat frames are acquired separately in the DCU architecture. See (O’Donovan et al., 2004).

41

Currently all finite verb forms receive an optional pred equation. This is not
entirely adequate as at least one Spanish verb haber (existential be) can never co-
occur with an overt subject, so ideally it should receive an obligatory pred equation.
Similarly, weather verbs are normally ungrammatical with explicit subjects (Example
4.5 a and b). Exceptionally they can take modified cognate subjects (Example 4.5 c).

(4.5) (a) * Llovió
rained

lluvia.
rain

(b) * La
the

lluvia
rain

llovió.
rained

(c) Llovió
rained

una
a

lluvia
rain

fina
light

pero
but

persistente.
persistent

“A light but persistent rain rained down.”

Whether it is possible to learn from treebank data which verbs do not allow overt
subjects and under what conditions remains an open question for future investigation.

The use of optionality in the treatment of Spanish clitic doubling and null subjects
illustrates language-specific problems that arise for LFG induction, but for which there
are standard solutions in the LFG framework. Those solutions can be adopted and
adapted for our data-driven approach to grammar acquisition. They may require addi-
tional implementation effort (in this case adding appropriate optionality support to the
constraint solver), but otherwise they can be easily accommodated within the existing
methodology.

In the following section I discuss a phenomenon which is more problematic as it
does not have a widely agreed-upon solution in standard LFG and thus is an issue in
any computational implementation including the current one.

4.3.2 Periphrastic constructions

In Spanish periphrastic constructions, such as in Example (4.6 a), verbal pronominal
clitics which are understood as arguments of the “lower” verb can attach to the “higher”
verb. This phenomenon, called clitic climbing, is only grammatical with certain verbs.
Others do not admit it, as illustrated in Example (4.6 b). The verbs that do admit
clitic climbing are sometimes called light verbs.

(4.6) (a) La
her

puedo
can-1sg

ver.
see

Puedo
can-1sg

ver la.
see-her

I can see her.

(b) * La
her

insist́ı
insisted-1sg

en
in

ver.
see

Insist́ı
insisted-1sg

en
in

ver la.
see-her

I insisted on seeing her.

Normally only the clitic climbing versions of periphrastic constructions present dif-
ficulties for an LFG account due to the mismatch of the position of arguments in the
tree and where they should end up in the f-structure. However, the c-structure config-
uration adopted for periphrastic constructions in Cast3LB generalizes this problematic
mismatch to all contexts.

42

S

sn-SUJ

El hombre
the man

gv

vm

debió
must-past

inf

vm

acabar
end-up

gerund

vm

creyendo
believing

S-CD

que la vecina ...
that the neighbor...



















































subj
[

“el hombre”
]

pred ‘deber’

tense past

light +

xcomp





























subj []

pred ‘acabar’

light +

xcomp













subj []

pred ‘creer’

light −
comp

[

“que la vecina ...”
]



























































































Figure 4.4: Periphrastic construction with two light verbs: The treebank tree, and the
f-structure produced

As illustrated in Figure 4.4, all verbs participating in the periphrastic construction
are under the gv (Verb Group) node, with the argument of the lowest verb being
attached as sister to the gv, rather than the rightmost vm under gv. This example
also illustrates that periphrastic constructions can be combined with each other, so in
principle the lowest non-light verb could be nested a number of levels deep.

There are several proposals of how to deal with periphrastic constructions with
clitic climbing within LFG. Both Alsina (1997) and Butt (1997) propose a predicate
composition analysis. As in standard LFG pred values can never unify, this approach
requires modifications to the unification operation. In (Andrews and Manning, 1999)
the authors propose an even more radical departure from standard LFG and replace the
projection architecture with differential information spreading within the f-structure.

43

S

gv
↑=↓

vm
↑=↓

inf
(↑ xcomp) = ↓
(↑ light) = +

vm
↑=↓

gerund
(↑ xcomp) = ↓
(↑ light) = +

vm
↑=↓

S-CD
(↑ xcomp* comp) = ↓

(← light) = + (← light) = −

Figure 4.5: Treatment of periphrastic constructions by means of functional uncertainty
equations with off-path constraints

As there seems to be no consensus as to the best treatment of Romance constructions
involving light verbs, I decided in favor of a conservative approach which avoids non-
standard extensions to the LFG formalism. I use functional uncertainty and a nested
xcomp configuration in the treatment of periphrastic constructions. The mechanism is
illustrated in Figure 4.5. The inf(initive) and gerund daughters of the gv node constrain
the f-structure corresponding to their mother nodes to be light +, and introduce their
own f-structure as the value of xcomp attribute.

Non-subject sisters of the gv are annotated with functional uncertainty equations
which specify that their f-structure is the value of the gf attribute arbitrarily embedded
in a series of xcomps. There is an off-path constraint that specifies that the f-structure
containing each of the xcomps in the path has to be light +. Another off-path
constraint on the f-structure containing the final gf restricts it to be light −. Together
those annotations ensure that arguments are always attached to the lowest (non-light)
verb. This is the correct analysis for the majority of periphrastic constructions.2

This treatment of periphrastic constructions is a compromise solution: from a de-
scriptive perspective it does not perfectly model the linguistic phenomena in question.
On the other hand, it allows us to avoid implementing a solution which departs too far
from the standard LFG formalism and for which there is no consensus among theoretical
linguists.

2One exception are causative constructions, where, if one insists on an xcomp-type treatment, the
causee should be the argument of the causative verb, whereas the other arguments should depend on
the verb expressing the event caused (Alsina, 1997).

44

For our present purposes, the xcomp-based treatment is adequate, and has the
advantage that the resulting f-structure parallels the analysis that would be used in
languages with no clitic climbing (such as English) for similar sentences. This could
potentially be useful if our LFG resources are to be used in multilingual applications.

4.4 Summary

In this chapter I described the work carried out to expand the coverage and linguistic
adequacy of the Spanish annotation algorithm. This effort enabled experiments on
Spanish LFG parsing described in the next chapter. I have also used the enhanced
annotation algorithm to produce a set of 336 hand-corrected f-structures which were
subsequently used for evaluation of the LFG parsing system for Spanish.

45

Chapter 5

Learning Function Labels

5.1 Introduction

As described in Section 2.2.1 the only module in the LFG parsing architecture which is
not built by learning a model from labeled data is the annotation algorithm (compare
Figure 2.2). It has to be developed manually, separately for each treebank and language
and requires expertise in the language in question, LFG, as well as programming skills.
Thus it is likely to be the main bottleneck slowing down development of multilingual
data-driven LFG parsing resources using the DCU approach.

Because of this, it is desirable to minimize and simplify this component of the overall
system as much as possible. In this chapter I investigate using machine-learning ap-
proaches to accurately learning syntactic and semantic function labels from treebanks.
The labels often carry the same information as LFG annotations and in many cases
there is a simple mapping between the two, and in many other cases access to accu-
rately recovered function labels simplifies and eases the development of the annotation
algorithms.

Section 5.2 investigates three machine learning methods to acquire function labels
from the Spanish Cast3LB treebank. In Section 5.3 I describe how function labeling
performance can be further improved by reducing the mismatch between training and
testing instances, and I apply the method to English and Chinese data, highlighting
the ease of porting of machine learning methods across languages.

I show that function labels can be reliably learned using machine-learning ap-
proaches and that all three algorithms tested substantially outperform the baseline,
while the Support Vector Machine performs best for the Spanish treebank data. Fur-
thermore, when the approach is further improved and applied to the English Penn-
treebank data, it achieves the highest score on the function labeling task reported in
literature to date.

Part of the research presented in this chapter has been previously published in
(Chrupa la and van Genabith, 2006a,b) and (Chrupa la et al., 2007).

5.2 Learning Cast3LB Function Labels

In this section I discuss the particular features of Spanish and the Cast3LB treebank
which challenge some of the assumptions made in the design of the LFG acquisition

46

architecture initially developed using the English Penn Treebank data.

5.2.1 Annotation algorithm

The f-structure annotation algorithm for Spanish is implemented in a similar fashion
to the original one for English, described in detail in (Burke, 2006) and briefly sketched
here in Section 2.2.1. The algorithm visits every node in the c-structure tree and
annotates it with LFG functional equations. The following information is used to
determine the annotation:

Head table. This table specifies, for each local subtree of depth one, which constituent
is the head daughter.

Category labels. Category labels of the current node and the mother node, together
with position relative to head, can in many cases be used to determine the anno-
tation.

POS tags. Cast3LB POS tags encode morphological features which the annotation
algorithm translates into f-structure morphological attributes.

Function labels. Function labels in the Spanish Cast3LB treebank annotate nodes
with their grammatical function. Most non-local dependencies (NLDs) are also
encoded via function labels1. Grammatical function labels can be mapped straight-
forwardly to LFG functional equations.

The Spanish annotation algorithm depends crucially on the presence of function labels
in c-structure trees. Those function are a used in order to assign annotations to main
sentence constituents, i.e. sisters of the gv (verb group) constituent. In order to
determine annotations for the internal structure of constituents such as noun phrases
or prepositional phrases, configurational information is exploited.

Function labels are present in treebank trees, but typically absent from parser out-
put: thus we will need to develop a method to learn a model able to add them to
parsed trees. The reasons behind the much greater weight given to functional labels in
the Spanish are due to the relatively flexible constituent order and less configurational
nature of this language as compared to English.

Constituent order and configurationality in Spanish

The method of automatic LFG induction was initially developed using the English
Penn-II Treebank data. The idea behind the annotation rules is that limited configu-
rational and categorial information should in most cases be sufficient to determine a
constituent’s grammatical function in the sentence: as evidenced by the good results of
this approach for English, this assumption is borne out for this language. It turns out
that the approach is more problematic for the Spanish Cast3LB data. Spanish allows
much more variation and flexibility in major sentence constituent order than English.
Partly as a consequence of this flexibility, the treebank encoding of syntactic structure
also has to be different than that of the Penn Treebank.

1In a small number of cases coindexations are used

47

Although the canonical word order for Spanish is SVO, in Cast3LB there are about
20% post-verbal subjects, and about 11% preverbal non-clitic direct objects. Thus the
information on position relative to the verb is not a reliable predictor of grammatical
function in Spanish.

Accordingly, the Spanish treebank makes extensive use of function labels to make
the grammatical function of constituents more explicit. Although there are also func-
tional labels in the Penn Treebank, their use is less necessary. In the Penn Treebank,
configuration information alone is often sufficient to determine grammatical function:
e.g.: left NP sister to VP is typically a Subject while right NP daughter to V is an
Object.

While in English tree configuration alone will in most cases constrain the possible
grammatical functions of constituents, this is in general not the case in Spanish. In a
language like Spanish configuration is only one of several sources of interacting “soft”
constraints on grammatical function. This means that an annotation algorithm using
solely categorial and configuration information and a set of categorical rules cannot
reliably generate LFG functional annotations for the Spanish Cast3LB treebank.

Instead we would like to extract features of the constituent trees which are plausible
(but “soft”) predictors of grammatical function and learn from the treebank how to
use them to assign grammatical functions to tree nodes. More concretely, we will learn
from training data how to assign the function labels described above to constituency
trees. Such trees, with nodes tagged with function labels predicted by our model, will
then be used by the annotation algorithm and mapped to LFG functional equations.
Thus the Spanish annotation algorithm will rely on function labels much more heavily
than is the case for English. It is therefore important to be able to enrich parser-output
trees with those labels as reliably as possible.

The initial implementation described in (O’Donovan et al., 2005) relied on the parser
itself to obtain function-tagged parse trees. Bikel’s parser (Bikel, 2002) was trained on
trees where function labels were simply part of the category label, so instead of having
one non-terminal category sn (Noun Phrase) there are several different NP categories
e.g. sn-suj, sn-cd, sn-ci, etc. I treat this simple method as a baseline in order to
determine how much it could be improved on by the following alternative method: I
use the parser to learn and output plain constituency trees and then a separate module
learns how to add Cast3LB function labels in a postprocessing step. The intuition
behind adopting this approach is that we avoid the multiplication of categories (which
could potentially lead to a sparse-data-related decline in performance), and also achieve
better control over the learning method and the feature set used than if we just rely
on the parser.

5.2.2 Previous work on learning function labels

Blaheta and Charniak (2000) use a generative probabilistic model with feature de-
pendencies encoded by means of feature trees in which nodes are features which are
assumed to depend only on their ancestors. They experiment with a number of feature
trees and learn models to assign Penn-II Treebank function labels to Charniak’s parser
output. Using the best performing model they report an f-score 88.472% on original
treebank trees and 87.277% on the correctly parsed subset of tree nodes.

Jijkoun and de Rijke (2004) describe a method of enriching output of a parser with

48

information that is included in the original Penn-II trees, such as function labels, empty
nodes and coindexations. They first transform Penn trees to a dependency format and
then use memory-based learning to perform various graph transformations. One of
the transformations is node relabeling, which adds function labels to parser output.
They report an f-score of 88.5% for the task of function labeling on correctly parsed
constituents.

Musillo and Merlo (2005) and Merlo and Musillo (2005) extend the Henderson
parser (Henderson, 2003) and model function labels as both expressions of the lexical
semantics properties of a constituent and as syntactic elements whose distribution is
subject to structural locality constraints. This improves their both parsing score and
function labeling score. They do not report scores on the full set of Penn-II function
labels since they only try to recover the so-called syntactic and semantic label types
(see Table 5.15 in Section 5.3.1).

Gabbard et al. (2006) describe a two stage parser which builds Penn Treebank anal-
yses including both function labels and empty categories and co-indexations. Function
labeling is performed during the first stage: they modify Bikel’s implementation of
Collins’ parsing model to enable it to output function labels. They report 88.96% f-
score on correctly parsed constituents on WSJ section 23. This approach is equivalent
to the one used by O’Donovan et al. (2005), and treated here as a baseline.

5.2.3 Assigning Cast3LB function labels to parsed Spanish text

I divided the Spanish treebank into a training set of 80%, a development set of 10%,
and a test set of 10% of all trees. I randomly assigned treebank files to these sets to
ensure that different textual genres are about equally represented among the training,
development and test trees.

Constituency parsing For constituency parsing I use Bikel’s (Bikel, 2002) parser
for which I developed a Spanish language package adapted to the Cast3LB data. Prior
to parsing, I perform one of the tree transformations described by Cowan and Collins
(2005), i.e. I add CP and SBAR nodes to subordinate and relative clauses. This is
undone in parser output.

The category labels in the Spanish treebank are rather fine grained and often contain
redundant information. For example there are several labels for Nominal Group, such
as grup.nom.ms (masculine singular), grup.nom.fs (feminine singular), grup.nom.mp
(masculine plural) etc. This number and gender information is already encoded in
the POS tags of nouns heading these constituents. I preprocess the treebank and
reduce the number of category labels, only retaining distinctions that are useful for
LFG parsing. The labels we retained are the following: INC, S, S.NF, S.NF.R, S.NF,
S.R, conj.subord, coord, data, espec, gerundi, grup.nom, gv, infinitiu, interjeccio, morf,
neg, numero, prep, relatiu, s.a, sa, sadv, sn, sp, and versions of those suffixed with .co
to indicate coordination). For constituency parsing I also reduce the number of POS
tags by including only selected morphological features. Table 5.1 provides the list of
morphological features included for the different parts of speech. In the experiments I
use gold standard POS tagged development and test-set sentences as input rather than
tagging text automatically.

49

Part of Speech Features included
Determiner type, number
Noun type, number
Adjective type, number
Pronoun type, number, person
Verb type, number, mood
Adverb type
Conjunction type

Table 5.1: Features included in POS tags. Type refers to subcategories of parts of
speech such as e.g. common and proper for nouns, or main, auxiliary and semiauxiliary
for verbs. For details see (Civit, 2000).

LB Precision LB Recall F-score
All 84.18 83.74 83.96
≤ 70 84.82 84.35 84.58

Table 5.2: C-structure parsing performance.

The results of the evaluation of c-structure parsing performance on the test set are
shown in Table 5.2. Labelled bracketing f-score for all sentences is just below 84% for all
sentences, and 84.58% for sentences of length ≤ 70. In comparison, Cowan and Collins
(2005) report an f-score of 85.1% (≤ 70) using a version of Collins’ parser adapted for
Cast3LB, and additionally using reranking to boost performance. They use a different,
more reduced category label set as well as a different training-test split. Both Cowan
and Collins (2005) and the present thesis report scores which ignore punctuation.

Cast3LB function labeling For the task of Cast3LB function label assignment I
experimented with three machine learning algorithms: a memory-based learner (Daele-
mans and van den Bosch, 2005), a maximum entropy classifier (Berger et al., 1996) and
a Support Vector Machine classifier (Vapnik, 1998). For each algorithm I used the same
set of features to represent parse-tree nodes that are to be assigned one of the Cast3LB
function labels. I used a special null label for nodes where no Cast3LB function label
is present. Unlike in the case of the English Penn-II treebank, in Cast3LB a given node
can only have a single function label. Thus we can train a single multiclass model,
rather than a separate binary classification model for each label as in Section 5.3.

In Cast3LB only nodes in certain contexts are eligible for function labels. For this
reason I only consider a subset of all nodes as candidates for function label assignment,
namely those which are sisters of nodes with the category labels gv (Verb Group), in-
finitiu (Infinitive) and gerundi (Gerund). I extract the following three types of features
encoding configurational, morphological and lexical information for the target node and
neighboring context nodes:

• Node features:

– position relative to head

– head lemma

50

– alternative head lemma (i.e. the head of NP in PP)

– head POS

– category

– definiteness

– agreement with head verb

– constituent yield length

– human/nonhuman (according to Spanish Wordnet (Vossen, 1998))

• Local features:

– head verb

– verb person

– verb number

– parent category

• Context features: node features (except position) of the two previous and two
following sister nodes (if present).

Figure 5.1 illustrates features extracted from an example node.
I used cross-validation for refining the set of features and for tuning the parameters

of the machine-learning algorithms. I did not use any additional automated feature-
selection procedure.

I made use of the following implementations: TiMBL (Daelemans et al., 2004) for
Memory-Based Learning, the MaxEnt Toolkit (Le, 2004) for Maximum Entropy and
LIBSVM (Chang and Lin, 2001) for Support Vector Machines.

For TiMBL I used k nearest neighbors = 7, the Jeffrey Divergence as the distance
metric, the Inverse Distance for distance-weighted class voting, and the Gain Ratio
metric for feature weighting. Those options were found using the Paramsearch algo-
rithm (van den Bosch, 2004). Daelemans and van den Bosch (2005) describe the various
options for TiMBL in detail. For MaxEnt, I regularized the model using a Gaussian
prior with σ2 = 1. For SVM I used the RBF kernel with the kernel parameter γ = 2−7

and the cost parameter C = 32.

5.2.4 Cast3LB function label assignment evaluation

I present evaluation results on the original gold-standard trees of the test set as well
as on the test-set sentences parsed by Bikel’s parser. For the evaluation of Cast3LB
function labeling performance on gold trees the most straightforward metric is the
accuracy, or the proportion of all candidate nodes that were assigned the correct label.

However we cannot use this metric for evaluating results on the parser output. The
trees output by the parser are not identical to gold standard trees due to parsing errors,
and the set of candidate nodes extracted from parsed trees will not be the same as for
gold trees. For this reason I use two alternative metrics which are independent of tree
configuration and use only the Cast3LB function labels and positional indices of tokens
in a sentence: the Node Span metric and the Headword metric.

51

Figure 5.1: Examples of features extracted from an example node

52

t

t

t

t

t

7.0 7.5 8.0 8.5 9.0 9.5

0.
76

0.
80

0.
84

0.
88

log(n)

A
cc

ur
ac

y

s

s

s

s

s

m

m

m

m

m

Figure 5.2: Learning curves for TiMBL (t), MaxEnt (m) and SVM (s).

In Node Span, for each function-labeled tree I first remove the punctuation tokens.
Then I extract a set of tuples of the form 〈γ, i, j〉, where γ is the Cast3LB function
label and i..j is the range of tokens spanned by the node annotated with this function.
I use the standard measures of precision, recall and f-score to evaluate the results. For
parser-output trees I apply this metric on the correctly bracketed subset of nodes, since
the evaluation should not be sensitive to what function label, if any, was assigned to
incorrect bracketings.

The Headword metric ignores constituent bracketing altogether and only considers
whether constituent headwords are assigned the correct function label. For this measure
we project the function label of each constituent down to its head terminal, and measure
precision and recall on sets of tuples 〈γ, i〉 where γ is the function label and i is the index
of the terminal bearing it after projection. The Headword metric does not consider
constituent bracketings and can be applied directly to parser output without filtering
out incorrectly parsed nodes: thus it will give lower absolute numbers than Node Span.
It can be argued that it better approximates how useful the function-labeled tree would
be for an application which needs to recover the basic argument structure of a sentence.
In most such scenarios it is much more important to assign correct function to head
words than to get all constituent boundaries right.

Results for the three algorithms on gold-standard trees are shown in Table 5.3.
Precision, Recall and F-score were computed with the Node Span method. The SVM
outperforms both MBL and MaxEnt, scoring 89.34% on accuracy and 86.87% on f-

53

Acc. Prec. Recall F-score

MBL 87.55 87.00 82.98 84.94
MaxEnt 88.06 87.66 86.87 85.52

SVM 89.34 88.93 84.90 86.87

Table 5.3: Cast3LB function labeling performance for gold-standard trees (Node Span)

Precision Recall F-score
Baseline 72.63 75.35 73.96

MBL 78.09 78.75 78.42
MaxEnt 78.90 79.44 79.17

SVM 80.58 81.27 80.92

Table 5.4: Cast3LB function labeling performance for parser output (Node Span: cor-
rectly parsed constituents)

score. The learning curves for the three algorithms, shown in Figure 5.2, are also
informative, with SVM outperforming the other two methods for all training set sizes.
In particular, the last section of the plot shows SVM performing almost as well as MBL
with half as much learning material.

Table 5.4 shows the performance of the three methods on parser output with the
Node Span metric on correctly bracketed nodes. The baseline contains the results
achieved by treating compound category-function labels as atomic during parser train-
ing so that they are included in parser output. Again the best algorithm turns out
to be SVM. It outperforms the baseline by a large margin: 6.96% absolute f-score or
26.73% relative error reduction.

Table 5.5 show the results computed with the Headword metric: as expected the
absolute values are lower, but the overall ranking of the four methods remains the same,
with SVM performing best.

The difference in performance for gold standard trees, and the correctly parsed
constituents in parser output is rather larger than what Blaheta and Charniak (2000)
report. Further analysis is needed to identify the source of this difference but one con-
tributing factor may be our use of a greater number of context features, combined with
a higher parse error rate in comparison to their experiments on the Penn II Treebank.
Since any mis-analysis of constituency structure in the vicinity of the target node can
have a negative impact, greater reliance on context means greater susceptibility to parse

Precision Recall F-score
Baseline 69.19 70.77 69.97

MBL 74.85 73.92 74.38
MaxEnt 75.78 74.84 75.30

SVM 77.29 76.44 76.86

Table 5.5: Cast3LB function labeling performance for parser output (Headword)

54

Methods p-value
Baseline vs SVM 1.169× 10−9

Baseline vs MBL 2.117× 10−6

MBL vs MaxEnt 0.0799
MaxEnt vs SVM 0.0005

Table 5.6: Statistical significance testing results on for the Cast3LB tag assignment on
parser output.

Precision Recall F-score
Upper bound 97.80 97.28 97.54

Baseline 73.95 70.67 72.27
SVM 76.90 74.48 75.67

Table 5.7: LFG F-structure evaluation results (preds-only) for parser output

errors. Another factor to consider is the fact that I trained and adjusted parameters
on gold-standard trees, and the model learned may rely on features of those trees that
the parser is unable to reproduce: I present research addressing this issue in Section
5.3.

For the experiments on parser output I performed a series of sign tests in order to
determine to what extent the differences in performance between the different methods
are statistically significant. For each pair of methods I calculate the f-score (using
Node Span) for each sentence in the test set. For those sentences on which the scores
differ, i.e. the number of trials, the number of cases that the second method is better
is the number of successes. Then I run the binomial test with the null hypothesis
that the probability of success is chance (= 0.5) and the alternative hypothesis that
the probability of success is greater than chance (> 0.5). The results are summarized
in Table 5.6. Given that I perform 4 pairwise comparisons, I apply the Bonferroni
correction and adjust the target αβ = α

4 . For the confidence level 95% (αβ = 0.0125)
all pairs give statistically significant results, except for MBL vs MaxEnt.

5.2.5 Task-based LFG annotation evaluation

Finally, I also evaluated the actual f-structures obtained by running the LFG-annotation
algorithm on trees produced by the parser and enriched with Cast3LB function labels
assigned using SVM. For this task-based evaluation I produced a gold standard consist-
ing of f-structures corresponding to all sentences in the test set. The LFG-annotation
algorithm was run on the test set trees (which contained original Cast3LB treebank
function labels), and the resulting f-structures were manually corrected.

Following Crouch et al. (2002), I convert the f-structures to triples of the form
〈GF,Pi, Pj〉, where Pi is the value of the pred attribute of the f-structure, GF is an
LFG grammatical function attribute, and Pj is the value of the pred attribute of the
f-structure which is the value of the GF attribute. This is done recursively for each
level of embedding in the f-structure. Attributes with atomic values are ignored for the
purposes of this evaluation: this is referred to as preds-only evaluation. The results

55

atr cc cd ci creg mod suj

atr 136 2 0 0 0 0 5
cc 6 552 12 4 25 18 6
cd 1 19 418 5 3 0 26
ci 0 6 1 50 1 0 0
creg 0 6 0 2 43 0 0
mod 0 0 0 0 0 19 0
suj 0 8 24 2 0 0 465

Table 5.8: Simplified confusion matrix for SVM on test-set gold-standard trees. The
gold-standard Cast3LB function labels are shown in the first row, the predicted tags in
the first column. So e.g. suj was mistagged as cd in 26 cases. Low frequency function
labels as well as those rarely mispredicted have been omitted for clarity.

obtained are shown in Table 5.7. The upper bound on this task is determined by the
preds-only score for f-structure evaluation when the input trees are the original treebank
trees. I also performed a statistical significance test for these results. The p-value given
by the sign test 2.118× 10−5, showing that the improvement is statistically significant.

The score achieved in the LFG f-structure evaluation in (Table 5.7) is comparable
to the Cast3LB tag assignment evaluation using the Headword metric (Table 5.5), but
not identical: in particular the difference between the baseline score and the SVM
score is smaller for the f-structure evaluation. This is can be attributed to the fact
that the mapping from Cast3LB function labels to LFG grammatical functions is not
one-to-one. For example three Cast3LB tags (cc, mod and et) are all mapped to LFG
adjunct. Thus mistagging a mod as cc does not affect the f-structure score. On the
other hand the Cast3LB cd tag can be mapped to obj, comp, or xcomp, and it can be
easily decided which one is appropriate depending on the category label of the target
node. Additionally many nodes which receive no function label in Cast3LB, such as
noun modifiers, are straightforwardly mapped to LFG adjunct. Similarly, objects of
prepositions receive the LFG obj function.

5.2.6 Error analysis

In order to understand sources of error and determine how much room for further
improvement there is, I examined the most common cases of Cast3LB function mistag-
ging. A simplified confusion matrix with the most common Cast3LB tags is shown in
Table 5.8. The most common mistakes occur between suj and cd, in both directions,
and also many cregs are erroneously tagged as cc.

Subject vs Direct Object I noticed that in over 50% of cases when a Direct Ob-
ject (cd) was misidentified as Subject (suj), the target node’s mother was a relative
clause. It turns out that in Spanish relative clauses genuine syntactic ambiguity is not
uncommon. Consider the following Spanish phrase:

(5.1) Sistemas
Systems

que
which

usan
use

el
det

95%
95%

de
of

los
det

ordenadores.
computers

56

grup.nom

nc

sistemas
systems

S.R

relatiu

que
which

gv

usan
use

sn

el 95% de los ordenadores
95% of computers

Figure 5.3: Subject - Direct Object ambiguity in a Spanish relative clause.

The c-structure tree for this phrase is shown in Figure 5.3. Its translation into En-
glish is either Systems that use 95% of computers or alternatively Systems that 95% of
computers use. In Spanish, unlike in English, preverbal / post-verbal position of a con-
stituent is not a good guide to its grammatical function in this and similar contexts.
Human annotators can use their world knowledge to decide on the correct semantic
role of a target constituent and use it in assigning a correct grammatical function, but
such information is not explicitly encoded in the features and thus not exploited by the
machine learning methods. Thus such mistakes seem likely to remain unresolvable in
the current approach.

Prepositional Object vs Adjunct The frequent misidentification of Prepositional
Objects (creg) as Adjuncts (cc) seen in Table 5.8 can be accounted for by several
factors. Firstly, Prepositional Objects are strongly dependent on specific verbs and the
comparatively small size of our training data means that there is limited opportunity
for a machine-learning algorithm to learn low-frequency lexical dependencies. Here the
obvious solution is to use a more adequate amount of training material when it becomes
available.

A further problem with the Prepositional Object - Adjunct distinction is its inher-
ent fuzziness. Because of this, treebank designers may fail to provide easy-to-follow,
clear-cut guidelines and human annotators necessarily exercise a certain degree of ar-
bitrariness in assigning one or the other function.

5.2.7 Adapting to the AnCora-ESP corpus

Recently an expanded and modified version of the Spanish Cast3LB treebank became
available (Mart́ı et al., 2007). This new treebank, the Spanish AnCora treebank2,

2Also known as CESS-ESP.

57

LB Precision LB Recall F-score

All 84.18 83.74 83.96
≤ 70 84.82 84.35 84.58

Table 5.9: C-structure parsing performance for Cast3LB

roughly doubles the size of Cast3LB: it has approximately 200.000 words.3

The annotation scheme roughly follows the Cast3LB guidelines. However, some
minor modifications have been introduced. The verb group constituent label gv has
been renamed to grup.verb, and a number of additional phrasal levels have been in-
troduced: adjective group (grup.a.ms, grup.a.fs etc), adverb group (grup.adv) and
participle (participi). Additional distinctions have been introduced for noun phrases
referring to different types of named entities (snp, sno etc). Also a new function label
ao, sentential adjunct, was introduced. Additional distinctions were introduced for
verbal adjuncts: cct stands for temporal and ccl for location adjunct. Analyses for
many Cast3LB sentences have been modified to correct errors or to reflect the revised
annotation guidelines.

In order to adapt the LFG grammar acquisition and parsing architecture to this
new resource the following modifications were needed:

• The label reduction scheme had to be changed to collapse some of the distinctions
introduced by new constituent labels. The new labels were reduced to grup.a,
grup.adv and sn.

• Minor modifications were made in the head table to account for new constituent
labels.

• Some modifications were necessary in the annotation algorithm because of new
constituent and function labels

• The 338 f-structures corresponding to the test-set sentences needed to be revised
to reflect the modifications in the analyses introduced in AnCora trees

For development and testing I used the same set of files as in the experiments
with Cast3LB. All the other files in AnCora served as training set. This means that
while in the Cast3LB experiments I had development and test sets which contained a
random sample of files from the whole corpus, this is no longer the case for the AnCora
corpus; specifically all of the additional training files seem to come from newspaper
text exclusively.

Results and discussion

Table 5.10 shows the evaluation results for c-structure parsing; Table 5.12 shows results
for function labeling. Table 5.14 presents the evaluation results for f-structure parsing

3It is claimed to contain 500.000 words in (Mart́ı et al., 2007), but the currently distributed version
has only 200.000.

58

LB Precision LB Recall F-Score

All 83.82 83.35 83.58
≤ 70 84.37 83.88 84.13

Table 5.10: C-structure parsing performance for AnCora

Precision Recall F-score

Baseline 72.63 75.35 73.96
SVM 80.58 81.27 80.92

Table 5.11: Cast3LB function labeling performance for parser output (Node Span:
correctly parsed constituents)

on the f-structures revised to reflect the revised AnCora trees. The corresponding
Cast3LB results are repeated here for ease of comparison.

Because of the differences in annotation between Cast3LB and AnCora the results
here are not strictly comparable to those reported in the previous section. However a
broad conclusion seems warranted: it seems that doubling the training set size does not
boost either the c-structure parsing or function labeling scores on the test set. This is
likely related to the fact mentioned above: the test-set files are not a random selection
from the AnCora corpus. Compared to the test-set, the additional training sentences
are likely to diverge in domain; it is also possible that there are annotation divergences
between the old and the new part of the corpus. As in the original Cast3LB evaluation,
the system using the SVM function labeler performs better than the baseline system.

Precision Recall F-score

Baseline 71.68 73.19 72.42
SVM 80.48 79.03 79.75

Table 5.12: AnCora function labeling performance for parser output for correctly parsed
constituents

59

Precision Recall F-score

Baseline 73.95 70.67 72.27
SVM 76.90 74.48 75.67

Table 5.13: LFG F-structure evaluation results (preds-only) for parser output for
Cast3LB

Precision Recall F-score

Baseline 75.37 72.77 74.04
SVM 77.21 74.27 75.71

Table 5.14: LFG F-structure evaluation results (preds-only) for parser output for An-
Cora

5.3 Improving Training for Function Labeling by Using

Parser Output4

5.3.1 Introduction

In this section I apply the SVM-based function labeling method developed for Spanish
in the previous section to the English and Chinese treebanks, and investigate how to
improve its performance by training the model on data more closely resembling the
final test instances.

The function labels used in the Penn treebanks fall into several types. Grammatical
labels are used to encode the grammatical function of some constituents. Form-function
labels are used to indicate the semantic class of adjuncts and discrepancies between
form and function. There is also a label used for topicalization, and several other
miscellaneous labels. Detailed information about the label sets can be found in the
annotation guidelines for the respective treebanks (Bies et al., 1995; Xue and Xia, 2000).
Table 5.15 provides a summary of labels used in the English and Chinese treebanks.

In this section I present research on the impact of different training methods in
a two-stage processing architecture where I use machine learning techniques to train
classifiers which add function labels to bare constituent trees such as those output by
Charniak’s or Collins’ parsers.

In a multi-stage processing pipeline the optimal training input for the downstream
stages is important. Ideally the training at stage n + 1 should be performed on input
from stage n: e.g. a parsing model which uses automatically POS-tagged input should
be trained on tags produced by the POS tagger used to preprocess the raw input, rather
than gold tags. In many existing pipeline architectures this has been violated.

For example, in the case of function labeling, the two-stage models used in pre-
vious work have all used “perfect” treebank trees to train the function labeler even

4The research in this section has been done in collaboration with Nicolas Stroppa and Georgiana
Dinu. Their main contribution was to help come up with and implement instance similarity metrics.
Stroppa also proposed extending the method to use n-best parser output trees (which was implemented
but is not discussed here as it did not consistently improve performance).

60

though the labeler operates on “imperfect” trees output by the parser (Blaheta and
Charniak, 2000; Jijkoun and de Rijke, 2004; Chrupa la and van Genabith, 2006b). This
is presumably due to the fact that the function labels we want to learn are attached to
nodes in the treebank trees. Unfortunately, those nodes do not necessarily correspond
to constituents in the trees produced by the parser.

The main contribution of this section consists in presenting a theoretically sound
method of training on parser output rather than treebank trees for the function labeling
task and investigating the effect of versions of this approach on the results as compared
against the baseline method which uses perfect treebank trees. I show that using the
better-motivated method helps to improve the quality and quantity of training material
available to the machine-learning algorithm.

In Section 5.3.2 I present the improved method of obtaining appropriate training
material for function labeling. In Section 5.3.3 I present experimental results for English
and Chinese.

5.3.2 Methods

There are two main approaches to obtaining parse trees with function label information:

• Two-stage systems, where “bare” parse trees are enriched with function labels in
a postprocessing step (Blaheta and Charniak, 2000; Jijkoun and de Rijke, 2004;
Chrupa la and van Genabith, 2006b),

• Modifying the parser’s internals to output function labels (O’Donovan et al., 2005;
Musillo and Merlo, 2005; Merlo and Musillo, 2005; Gabbard et al., 2006).

I use the two-stage architecture, in which the first stage consists of bare constituency
parsing using a statistical parsing model and the second stage decorates constituent
labels with function labels. The labeler is a machine-learning classification model. My
focus is to investigate ways of improving the performance of the classifier by extracting
more and better quality training examples from the available resources.

Improving the quality of the training material means making it more similar to the
instances that the model has to classify during prediction, i.e. we will try to better
approximate the standard assumption made in most machine-learning research that
instances (in training and test) are independently and identically distributed (i.i.d.), in
particular, they should be drawn from the same probability distribution.

In the previous two-stage approaches (Blaheta and Charniak, 2000; Jijkoun and
de Rijke, 2004; Chrupa la and van Genabith, 2006b) this assumption is not satisfied in
that the training instances are extracted from nodes in the “perfect” parse trees from
the treebank, whereas at prediction time the model has to classify instances extracted
from nodes in imperfect parser output, which can and does contain a certain proportion
of errors (incorrect bracketings or incorrect constituent labels).

I propose to alleviate this issue by using training material which is extracted from
the trees obtained by reparsing the training portion of the treebank and using the
(imperfect) trees output by the parser rather than the original treebank trees. We
still need the original treebank trees in order to assign classes (function labels) to the
training instances extracted from parser output. I do this by matching node-spans
between automatically parsed trees and gold trees in the training set. I only extract

61

Label Meaning ETB CTB

Clause types
IMP imperative

√

Q question
√

Syntactic labels
LGS logical subject

√ √

PRD predicate
√ √

PUT complement of put
√

SBJ surface subject
√ √

IO indirect object
√

OBJ direct object
√

FOC focus
√

Miscellaneous labels
CLF it-cleft

√

HLN headline
√ √

TTL title
√ √

CLR closely related
√

APP appositive
√

PN proper noun
√

SHORT short form
√

WH WH-phrases
√

Semantic (form-function) labels
ADV adverbial

√ √

BNF benefactive
√ √

DIR direction
√ √

EXT extent
√ √

LOC locative
√ √

MNR manner
√ √

NOM nominal
√

PRP purpose or reason
√ √

TMP temporal
√ √

CND condition
√

IJ interjective
√

VOC vocative
√ √

Topicalization
TPC topicalized

√ √

Table 5.15: Function labels in the English and Chinese Penn Treebanks

62

training instances from those nodes in the automatically parsed tree for which there
is a node with the same span in the gold tree, from which we can obtain the function
label.

Baseline method

The baseline method uses a simple two-stage architecture: constituency parsing, fol-
lowed by function labeling: this is the setup used in the experiments described in
Section 5.2. The first stage is performed by the constituency parsing model, obtained
by training a statistical parser on the training portion of the treebank. The output
of this stage, sentences parsed into bare constituency trees, are the input to the sec-
ond stage component, i.e. the function labeler. The labeler is trained, in the baseline
method, on the original “perfect” trees from the training portion of the treebank.

Features Each node to label is represented as a vector of features encoding categorial,
configurational and lexical information about the node and its context. Those features
are similar to the ones used in Section 5.2.3 for Spanish. However, the highly language-
specific features have been dropped (“humanness” according to Wordnet, definiteness
and agreement features). Also due to the fact that Penn trees are less shallow and
more hierarchical than Cast3LB trees, only one preceding and one following context
nodes are used, but the extra grandmother constituent label feature is added. The full
feature set is as following:

1. Node constituent label

2. Node head word’s part of speech tag

3. Node head word

4. Node’s head-sister’s constituent label

5. Node’s head-sister’s head word’s part of speech

6. Node’s head-sister’s head word

7. Node’s alternative head word’s part of speech tag (alternative head is the head
of the second child for PPs)

8. Node’s alternative head word

9. Node’s yield length

10. Node’s mother’s constituent label

11. Node’s grandmother’s constituent label

12. Offset to node’s head sister

Plus the following:

• Features 1,2,3,7,8,9 for the preceding sister node

63

• Features 1,2,3,7,8,9 for the following sister node

There is one minor complication: in principle a node can be decorated with more
than one function label (although labels belonging to the same group are (usually)
mutually exclusive). Thus we could train a separate classifier for each label, or a
separate classifier for each label group, or simply treat the label set on the node as an
atomic class. In the experiments reported below I used the first method, i.e. I train a
separate binary classifier for each function label, and combine their output to add a set
of function labels to each node.

Evaluation metrics

As noted in Section 5.2.4, evaluating the performance of a function labeling system is
not entirely straightforward. Blaheta and Charniak (2000) decide to measure f-score
over the correctly parsed subset of nodes, i.e. those nodes that subtend the correct
portion of the string and have the correct constituent label. This is similar to the Node
Span metric introduced in Section 5.2.4, modulo the fact that here both the bracketing
and the constituent label are used to determine the set of correctly parsed nodes. I will
refer to this metric as Labeled Node Span, and use it for evaluation in order to make
comparison to previous work meaningful. Additionally I also present evaluation results
using the Headword method.

Training on parser output

Using Labeled Node Span described above, since we are evaluating only the correctly
parsed subset of nodes, one might naively expect that the score should be the same for
labeling both the parser output and the perfect treebank trees. However, the results
reported in (Blaheta and Charniak, 2000) show that the performance is over 1% better
for the treebank trees. The authors convincingly explain that the likely cause is that for
parser output, although the focus node to be labeled is correctly parsed, the neighboring
context nodes that some features depend on may be incorrect.

This fact serves as the motivation for extracting training examples from treebank
sentences parsed by the same parser that is used to parse unseen test data. My hy-
pothesis is that training instances obtained in this way are going to be more similar
to test instances than the ones extracted from perfect treebank trees and thus will
better approximate the i.i.d assumption. I expect that the machine learning algorithm
will perform better on test instances which are more similar to those used for train-
ing; for example it might be able to weight down features which depend on incorrect
characteristics of the parse trees, as such features will be less reliable as class predictors.

The improved training example extraction procedure is as follows: sentences in the
training portion of the treebank are reparsed. Then we follow the algorithm presented
in Figure 5.4 to extract training instances. The function instances returns training
instances from a parse tree T given the reference treebank gold tree T ′ for the same
sentence. For each node n in T we check whether there exist one or more nodes with
the same span and constituent label in the corresponding T ′ (line 3)5. The function
instance takes the union of the function label sets (funcLabels(n′)) found on the

5The square bracket notation denotes multisets.

64

1 instances(T, T ′) =
2 N ← {nodeSpec(n) | n ∈ nodeSet(T ′)}
3 I ← [instance(n, T ′) | n ∈ nodeMultiSet(T) ∧ nodeSpec(n) ∈ N]
4 return I
5 instance(n, T ′) =
6 C ← ⋃ {funcLabels(n′) | n′ ∈ nodeSet(T ′) ∧ nodeSpec(n′) = nodeSpec(n)}
7 return 〈features(n), C〉
8 nodeSpec(n) = 〈nodeSpan(n), nodeConstituentLabel(n)〉

Figure 5.4: Algorithm for extracting training instances from a parser tree T and gold
tree T ′

Gold tree Parser tree
S

NP-SBJ

NN

Factory

NNS

payrolls

VP

VBD

fell

PP-TMP

IN

in

NP

NNP

September

S

NP-SBJ

NN

Factory

NNS

payrolls

VP

VBD

fell

PRT

RP

in

NP

NNP

September

Figure 5.5: Example gold and parser tree

nodes in the gold tree T ′ and returns this set (as a class C) together with the feature
vector features(n) corresponding to node n.

Figure 5.5 illustrates this algorithm: in effect we transfer function labels from nodes
in the gold tree to matching nodes in the parser tree. Matching nodes are those whose
constituent label and span are the same. In the example tree the sbj function label is
transferred but tmp is not since there is no matching node in the parser tree due to a
parsing error.

An issue with the method as described so far is that it uses a constituency parsing
model trained on sections 2-21 of WSJ to reparse those same sections so that we can
extract training material from them. It is very likely that the resulting parse trees will
be closer to gold trees than will be the case for test sentences taken from WSJ section 23.
It would be advisable to extract input for our labeling model from the treebank trees
reparsed with parsing models trained on material from which those trees are excluded.
I did not do this for the experiments on the English data with Charniak’s parser, due
to technical difficulties encountered when attempting to retrain this parser. However,
for the experiments on the Chinese data with Bikel’s parser I did 10-fold-cross-training,
that is I divided the training material into 10 parts and parsed each part in turn with
the model trained on the remaining 9 parts. I report the results on the Chinese data
in Section 5.3.3.

65

Instance count Overlap

Test 44,113 —
Baseline 741,833 9,067
Reparse 712,973 10,022

Table 5.16: Instance counts and instance overlap against test for the English Penn
Treebank training set

Instance similarity I tried to verify the prediction that the instances extracted using
the “reparsing” method would be more similar to test instances. As a simple metric
of similarity, I compare instance overlap between the training set and the test set.
Instance overlap is the cardinality of the intersection of the multiset of instance feature
vectors used for training and the multiset of instance feature vectors used for testing.
For multisets defined as tuples (A, f) with the underlying set A and the multiplicity
function f : A → N which assigns to each element the number of times it occurs,
multiset cardinality is defined as:

|(A, f)| =
∑

a∈A

f(a), (5.2)

and multiset intersection as:

(A, f) ∩ (B, g) = (A ∩B, a 7→ min(f(a), g(a))). (5.3)

I use both the baseline method where examples are extracted from gold trees, and
the improved “reparsing” training method to obtain training examples from sections
2-21 of the Wall Street Journal part of the English Penn Treebank and compare both
against instances extracted from the parsed sentences taken from section 23. For parsing
the test sentences and the training sentences I used the Charniak parser.

Table 5.16 summarizes the comparison. Even though the improved method produces
a lower total number of instances than the baseline (since I only extract instances from
correctly spanning nodes) it still shares 955 instances more with the test set than the
baseline.

To further test the conjecture about the reparsing method giving better training
examples I calculated mean Hamming distance between training examples and test
examples. Hamming distance counts the number of features at which two vectors
differ:

dh(v,w) =

|v|
∑

i=1

vi 6= wi . (5.4)

We calculate the mean distance between the collection of test instances T and the
collection of training instances U as:

d̄h(T,U) =
1

|T| × |U|
∑

t∈T

∑

u∈U

dh(t,u) . (5.5)

66

Mean distance to Test

Test 15.0999
Baseline 15.1483
Reparse 15.1283

Table 5.17: Mean Hamming distance scores for the English Penn Treebank training set

As shown in Table 5.17, against the test set derived from section 23 of WSJ we
get mean Hamming distance of 15.1483 for the baseline method and 15.1283 for the
reparsing method (for comparison the mean distance of the test set against itself is
15.099). According to this metric examples obtained by my method are more similar
to test examples.

5.3.3 Experimental results

In this section I present evaluation results on the function labeling task for two datasets:

• Section 23 of the WSJ portion of the English Penn II Treebank, with models
trained on data extracted from sections 2-21. Section 22 was used for develop-
ment. The Charniak parser6 was used for constituency parsing.

• Articles 271 to 300 of the Penn Chinese Treebank 5, with models trained on
data extracted from articles 26 to 270. Articles 1-25 were used for development.
I follow (Levy and Manning, 2003) in adopting this test/training/development
split. The Bikel parser7 was used for constituency parsing.

For both datasets I used the LIBSVM library (Chang and Lin, 2001) which implements
the Support Vector Machines algorithm (Vapnik, 1998).

Experiments with the English Penn Treebank

Table 5.18 summarizes evaluation results for the function labeling task on the En-
glish Penn II Treebank. I report the scores for three methods. The baseline consists
in extracting training data from the treebank trees. Reparse is the training method
described in Section 5.3.2 where nodes in the reparsed trees are mapped to labels in
the original treebank trees. Aux-POS consists in extracting the training data from the
treebank trees; however the terminal nodes in those trees are matched to corresponding
terminals in the reparsed trees and if the reparsed tree has the AUX or AUXG part-
of-speech tag, then the treebank POS tag is changed to that. This method explicitly
takes care of the fact that the Charniak parser’s POS tagger assigns AUX and AUXG
tags to some words which have verb POS tags in the original treebank.

Additionally I tried an alternative reparsing method, Reparse-HW. This is a vari-
ation on the Reparse method: the difference is the way nodes are matched between

6Available at ftp://ftp.cs.brown.edu/pub/nlparser/
7Available at http://www.cis.upenn.edu/~dbikel/software.html#stat-parser

67

Precision Recall F-score

Baseline 92.28 89.14 90.68
Aux-POS 92.67 89.98 91.31
Reparse 93.07 89.92 91.47

Table 5.18: Function labeling evaluation on parser output for WSJ section 23 - Labeled
Node Span

the gold trees and the parser trees in order to add function labels to the parser trees:
in Reparse we match on constituent label and span; in Reparse-HW we match just
on the constituent headword index. This more lax way of node matching allows us to
use more of the gold function labels from treebank trees and increase the amount of
training data. Since in training constituent bracketing is ignored, I use the Headword
metric for evaluating the performance of Reparse-HW performance since Headword
also ignores the constituent boundaries.

Table 5.19 presents the scores for all four methods using Headword: Reparse-HW
is slightly worse than Reparse: the increase in the number of training examples does
not in this case translate to improved performance.

Table 5.18 shows the results for the first three methods, using Labeled Node Span
to compute precision, recall and f-score. There is a clear increase in f-score over the
baseline for the reparsing method, which gives a relative error reduction of almost 8.5%
over the baseline. The approximate randomization test (Noreen, 1989) with 106 shuffles
obtained a p-value of 10−7 for the baseline versus the reparsing method, showing that
the improvement is statistically significant.

The score of the Aux-POS method shows that a large part of the improvement
obtained with reparse can be attributed to the correction of mismatches between the
training and test data at the level of POS tag, namely to the presence of AUX and
AUXG tags in the output of Charniak’s parser. The Reparse method corrects this
discrepancy between training and test trees automatically, together with other possible
divergences.

The results (91.47% f-score) are the best scores published to date on the function
labeling task evaluated on parser output on the section 23 of WSJ: 87.27% in (Blaheta
and Charniak, 2000), 88.5% in (Jijkoun and de Rijke, 2004) and 88.96% in (Gabbard
et al., 2006)8

Table 5.20 shows the performance broken down per function label. Although per-
formance on three labels (LOC, LGS and PRP) drops, the rest of the labels show the
same score or benefit from the enhanced training method.

8Not all of those scores are exactly comparable to ours or to each other. The score in (Jijkoun and
de Rijke, 2004) is on trees transformed into dependencies. Gabbard et al. (2006) use Bikel’s parser to
produce the trees whereas we use Charniak’s.

68

Precision Recall F-score

Baseline 88.25 84.23 86.19
Aux-POS 88.16 84.74 86.42
Reparse 88.53 84.62 86.53
Reparse-HW 88.37 84.69 86.49

Table 5.19: Function labeling evaluation on parser output for WSJ section 23 - Head-
word

Label Freq. in test Baseline Reparse

SBJ 4148 98.27 98.27
TMP 1303 91.19 91.52
PRD 1025 68.35 91.26
LOC 1024 89.45 89.06
CLR 635 68.98 68.93
ADV 419 85.98 89.36
DIR 293 68.98 71.20
TPC 267 86.50 96.02
PRP 207 68.35 67.95
NOM 199 95.02 95.58
MNR 178 76.12 77.62
LGS 166 88.10 88.10
EXT 105 87.72 88.24
TTL 61 74.42 74.42
HLN 52 18.18 26.23
DTV 19 66.67 66.67
PUT 10 66.67 66.67
CLF 3 — —
BNF 2 — —
VOC 1 — —

Table 5.20: Per-tag performance of baseline and when training on reparsed trees -
Labeled Node Span

69

Precision Recall F-score

Baseline 88.35 84.64 86.46
Reparse 88.54 84.82 86.64
Reparse + x-train 89.11 84.88 86.94

Table 5.21: Function labeling evaluation for the CTB on the parser output for the
development set

Precision Recall F-score

Baseline 91.46 90.13 90.79
Reparse 91.39 90.23 90.80
Reparse + x-train 91.53 89.43 90.47

Table 5.22: Function labeling evaluation for the CTB on the parser output for the test
set

Experiments with the Penn Chinese Treebank

For the Chinese Treebank I performed experiments evaluating the impact of using the
Reparse method and also the variation with cross-training on the function labeling
task.

The results obtained are somewhat contradictory: there is an improvement in per-
formance using both on the development set (articles 1-25), but on the test set (articles
271-300) the basic method shows practically no improvement whereas cross-training
actually leads to results worse than for the baseline.

Table 5.21 shows the results for the development set which are consistent with the
findings so far: the reparsing method outperforms the baseline by 0.18%. Additionally,
adding cross-training produces a further increase in the f-score of 0.3%.

However, as can be seen in Table 5.22, for the test set the predictions are not borne
out: with cross-training I actually obtain a lower score than the baseline (−0.32%);
without cross-training the score is only marginally better than the baseline (+0.01%).

I performed an approximate randomization test for both the development set and
the set, testing the baseline against the reparsing method with cross-training. For the
development set I obtained a p-value of 0.13; for the test set the p-value was 0.08 –
thus neither the improvement for the development set nor the decrease in f-score for
the test set are statistically significant.

It would be interesting to repeat the experiments for Chinese using larger data sets.
There are two reasons to want to do that. First, testing on a larger test set would offer
a higher confidence in the significance of the observed performance scores. Second,
I suspect that one reason that my approach did not show consistent improvement
across both the development set and the test set might be related to the relatively
small amount of training material used, for both training the parser and the function
labeling model. Thus parse quality is rather low, and since we only exploit correctly
parsed nodes in extracting training instances for labeling, the amount of training data

70

available decreases even further. I also suspect that parse quality for Chinese may
be lower than for English even while holding training set size constant, reflecting the
smaller amount of work which has gone into research on parsing Chinese.

Testing those conjectures remains an area for future investigation. It remains to be
seen whether using my approach with training sets comparable in size with the one we
used for English would more show more consistent benefits for Chinese.

Following up on the research described is this section I would like to better under-
stand what factors influence the effect of the proposed training methods on function
labeling performance. It should also be possible to apply the findings reported in this
section to other tasks where training examples are typically extracted from perfect
trees whereas the test data is produced automatically and contains errors. Training on
parser output instead could be beneficial in those situations.

5.4 Summary

In this chapter I showed how to reliably learn function labels from treebanks for sev-
eral languages using classification techniques from machine-learning. In the machine-
learning setting various interacting parse-tree features can be used to predict the correct
function label. This is more robust and reliable than trying to use categorical rules to
map configurations to grammatical functions in the LFG annotation algorithm. Au-
tomatically adding function labels to parse trees, and then using them in a simplified
annotation algorithm makes the DCU LFG parsing architecture easier to adapt to new
languages and treebanks.

I have shown how to successfully learn function labels from the Spanish Cast3LB
treebank and how the use of this methods substantially boosts the f-structure parsing
scores for this language. I have also shown how to improve the performance of the
function labeler on English Penn treebank data by extracting training material from
reparsed sentences rather than from original treebank trees. My approach improves
the similarity of the training material to the test instances as measured by instance
overlap and mean Hamming distance. I have consistently found statistically significant
improvements on the English Penn Treebank data, and a more mixed picture for the
Chinese Penn Treebank sentences.

71

Chapter 6

Learning Morphology and

Lemmatization

6.1 Introduction

In a lexicalized grammatical formalism such as LFG a large amount of syntactically
relevant information comes from lexical entries. It is, therefore, important to be able to
perform morphological analysis in an accurate and robust way for morphologically rich
languages. It would also be desirable to treat morphological analysis in the same way
as other aspects of building LFG representations: i.e. learn as much as possible from
treebank data, and minimize the amount of language-dependent manual specification.
In this chapter I first present existing work on supervised learning of morphological
structure. Then I present a novel method of learning to lemmatize running text, and
follow on with the description of Morfette - a probabilistic model of morphological
tagging combined with lemmatization.

6.1.1 Main results obtained

This chapter shows how lemmatization can be seen as a classification where the class
label is the representation of the operations needed to map a wordform to the corre-
sponding lemma. Two such representations (or edit scripts) are proposed: reverse
edit list which work best for the most common case of suffixation, and edit tree
which is more general and also gives good class labels for prefixation. I show that the
classifier approach to lemmatization can be used to lemmatize corpus text, i.e. word-
forms in context, as well as pairs of wordform and morphological tag. In both scenarios
the approach is competitive with state-of-the-art alternative methods.

Furthermore I propose a factored joint model – Morfette – for performing mor-
phological tagging and lemmatization. This model can be used to assign sequences
of lemma - morphological tag pairs to sentences. The model is trained on annotated
corpus data; however it also makes it easy to exploit alternative sources of annotated
data such as morphological dictionaries. The complete system shows good performance
on a number of datasets for inflectional languages.

Part of the research presented in this chapter has been previously published in
(Chrupa la, 2006) and (Chrupa la et al., 2008).

72

6.2 Previous Work

In this section I summarize existing work on supervised learning of morphological struc-
ture. I will not discuss unsupervised learning or non-data-driven finite-state approaches,
since the literature in those fields is vast and is not directly relevant to the focus of this
chapter.

6.2.1 Inductive Logic Programming

Early work on supervised learning of morphological structure was done within the In-
ductive Logic Programming (ILP) framework. ILP is a machine-learning methodology
for inducing general rules from examples and background knowledge (Muggleton, 1991;
Lavrač and Džeroski, 1994). First-order logic programming is used as a uniform repre-
sentation of the background knowledge, examples and hypotheses. Training examples
are typically represented as ground facts of the target predicate (i.e. the relation to
induce). Background knowledge is also typically represented as ground terms.

Two ILP systems capable of learning first-order decision lists have been used to learn
morphology: initial work made use of Foild (Mooney and Califf, 1995) to learn past
tense of English verbs; subsequently the more efficient ILP system Clog (Manandhar
et al., 1998) was shown to scale to large datasets and to accurately learn complex
inflectional morphology. Both systems use a hill-climbing strategy to find a locally best
solution.

Mooney and Califf (1995) present the Foidl system which extends the ILP paradigm
with three features which make it suitable for NLP tasks such as learning morphology:

• Background knowledge can be expressed intensionally, i.e. as logic rules rather
than extensionally as a collections of ground terms (facts).

• Negative examples are implicit (using the output completeness assumption)

• The target predicate that is learned can use the extralogical cut operator, i.e. the
clauses in the definition learned are ordered, and thus correspond to first-order
decision lists.

In order to learn the rules for past-tense formation for English verbs they provide the
algorithm with the background predicate split/3 which non-deterministically splits a
non-empty list into a prefix and a suffix. It is defined in Prolog as follows:

split([X,Y | Z], [X], [Y | Z]).

split([X | Y],[X | W],Z) :- split(Y,W,Z).

Since Foild target predicates can use the cut operator it can learn compact or-
dered decision lists where the initial clauses capture the most specific cases (exceptions)
whereas clauses further down the list deal with increasingly general rules. For example
the following target predicate can be learned:

past(A,B) :- split(A,C,[e,e,p]), split(B,C,[e,p,t]),!.

past(A,B) :- split(A,C,[y]), split(B,C,[i,e,d]),!.

past(A,B) :- split(A,C,[e]), split(B,C,[d]),!.

past(A,B) :- split(B,A,[e,d]).

73

This encodes the following decision list:

• If the word ends in eep, replace eep with ept (e.g. sleep → slept)

• If the word ends in y, replace y with ied (e.g. try → tried)

• If the word ends in e, replace e with ed (e.g. bake → baked)

• Otherwise, append ed (e.g. cook → cooked)

The authors show that Foild learns rules for predicting the past test of English
verbs with fewer examples and obtains better accuracy than previous ILP systems, and
other approaches such as neural networks or decision-tree forests (Ling, 1994).

Subsequently Foild was also used to learn the synthesis and analysis of Slovene
nouns (Džeroski and Erjavec, 1997).

As discussed by Manandhar et al. (1998) Foild has efficiency issues which make
it difficult to scale to datasets significantly larger than the English past-tense task.
The work on Slovene nominal morphology (Džeroski and Erjavec, 1997) was hampered
by the fact that it could not be trained on sufficiently large datasets. The Clog
ILP system described by Manandhar et al. (1998) remedies those efficiency issues and
demonstrates that the ILP approach can be extended to deal with realistic NLP tasks
such as supervised learning of complex morphology. Manandhar et al. (1998) perform
experiments on learning morphology for English, Romanian, Czech, Slovene and Esto-
nian. The datasets they use come from the Multext-EAST corpus (Erjavec, 2004),
which consists of the text of George Orwell’s novel 1984 in English and its translation
into several Central and East-European languages. The text is tokenized, and the to-
kens are annotated with lemma and a morphosyntactic description tag (MSD). Those
tags encode the part of speech and language-specific morphosyntactic features of the
word. The tags in the corpus text are manually disambiguated. The resource comes
with morphological lexicons which include all the word forms in the corpora, with all
their possible analyses.

For the experiments the authors used word-lemma-MSD triples for wordforms in the
corpus, in their non-disambiguated form. Only nouns and adjectives were used. From
each triple two examples were created, one for morphological analysis and one for syn-
thesis. Some features, irrelevant for morphological behavior, such as proper/common
noun distinction were collapsed to a unspecified value. They used the background
knowledge predicate mate(W1,W2,P1,P2,S1,S2) which is true if P1 and S1 are the
prefix and suffix of W1 and analogously with P2, S2 and W2. This is sufficient to handle
concatenative morphology such as in the languages the paper deals with.

The first three parts of 1984 were used for training and the appendix for testing.
There were 288 MSDs between the five languages and thus the system had to learn 288
programs for synthesis and analysis each. The accuracies reported by the authors for
Clog trained on the full training set are shown in Table 6.1.

Erjavec and Džeroski (2004) present a system for lemmatizing Slovene open-class
words. Unlike in (Manandhar et al., 1998) the system is able to lemmatize raw word
forms; this is achieved by decomposing the task into two stages: first raw text is
MSD-tagged using a part-of-speech tagger, then the surface wordform-MSD tuples are
lemmatized. The tagger used is the trigram TnT tagger described in (Brants, 2000). It

74

Analysis Synthesis

English 96.05 98.02
Romanian 92.56 94.66
Czech 97.08 97.34
Slovene 96.95 91.56
Estonian 97.21 83.64

Table 6.1: Morphological synthesis and analysis performance in (Manandhar et al.,
1998)

is trained on 100,000 word corpus of MSD-tagged Slovene from Multext-EAST and
backed up by a lexicon and various heuristics.

The Clog system is used to learn first order decision lists to predict word lemma
given the wordform and the MSD tag determined by the MSD tagging module. Lemma-
tization is only learned for nouns, adjectives, and verbs. Lemmas for closed-class words,
such as pronouns or auxiliary verbs, are retrieved from a lexicon, and for other open-
class words such as adverbs, lemmas are always equal to wordforms. For training
the lemmatizer the Multext-EAST lexicon of approximately 15,000 lemmas and the
corresponding inflected forms was used.

The system was evaluated on the IJS-ELAN Slovene corpus (Erjavec, 2002). Since
the TnT tagger trained on Multext-EAST performed poorly on the test corpus the
authors tried to improve its accuracy by adding to the training set 1% of the test corpus
sentences. They also used a lexicon covering 97% of the test corpus tokens and certain
other heuristics to correct systematic tagging errors.

The improved MSD tagger achieves an accuracy of 92.9% on all tokens in the test
set, and 90.0% over nouns, adjectives, and verbs only. The authors tested the perfor-
mance of the whole system with lemmatization in the following way: they extracted
a test lexicon from the tagged corpus consisting of words tagged as nouns, adjectives
or verbs, and which have not been assigned a lemma during tagging based on lexicon
lookup. From this they filtered out wordforms which contain non-alphanumeric char-
acters (except hyphen), are less than four characters long, and appear only once in the
corpus, as well as English words. The resulting lexicon consists of 763 distinct pairs
of surface wordform and automatically assigned MSD. On this test set 92% of lemmas
were correctly assigned; most errors were due to MSD-tagging mistakes.

6.2.2 Memory-based learning

An approach to morphological analysis of Dutch wordforms based on the nearest-
neighbor classifier is described in van den Bosch and Daelemans (1999). It deals with
both inflectional and derivational morphology.

For each position in a wordform the system predicts a label which encodes whether
there is a morpheme boundary at that point, its part of speech, and what spelling
changes were present. For example for the wordform abnormaliteiten (abnormalities)
the first character receives the label A+Da, which means the morpheme beginning

75

at that position is an adjective, and the spelling change is the deletion of the letter
a (i.e. the original adjective morpheme is abnormaal (abnormal)). The character i
which starts the morpheme iteit receives the label N A*, which encodes the fact that
the morpheme attaches to the right of an adjective and produces a noun. Finally the
character e at the start of the morpheme en receives the label m, which stands for
plural inflection.

All the other characters receive the 0 label, meaning that no morphological bound-
ary is present at that position. The wordforms for training and testing were taken
from the CELEX (Baayen et al., 1993) lexical database. The features used were the
character at the current position plus the preceding and following five characters. The
overlap distance metric was used with features weighted by information gain. The
authors performed a 10-fold cross-validation. They report the following generalization
accuracies: 95.88% instances (i.e. positions in wordforms) are classified correctly. This
translates into 64.63% correctly analyzed words.

6.2.3 Analogical learning

Stroppa and Yvon (2005) present yet another take on supervised learning of morphol-
ogy: analogical learning. Supervised learning using analogical reasoning is a type of
instance-based learning model. Each training instance is a vector of m features. Given
the set of training instances S = {X1, ...,Xn} the task is to predict the missing features
of new instances: thus this setting is more general than the classification task described
in Section 3.2. The inference proceeds as follows: training instances are stored and no
abstraction is performed. Given a new instance X, analogical proportions involving X
are identified: the features of objects involved in these relations are used to infer the
missing features of the instance X. An analogical proportion is a relation involving
four objects, and denoted as A : B :: C : D, i.e. A is to B as C is to D. Let I(X) be
the set of known features of X (projection to the input space) and O(X) for the set of
unknown features of X (projection to the output space). Then the inference process
can be formalized as:

1. Construct the set T (X) ∈ S3 such that
T (X) = {(A,B,C) ∈ S3 | I(A) : I(B) :: I(C) : I(X)}

2. For each (A,B,C) ∈ T (X) compute hypotheses Ô(X) by solving the analogical

equation: Ô(X) = O(A) : O(B) :: O(C) :?

Various methods are used to optimize search in S3 to make it tractable.
The analogical learning model requires the availability of a method to compute

analogical proportions on feature vectors. Stroppa and Yvon (2005) present a general
definition of analogical proportion for semigroups and two concrete instantiations: for
words over finite alphabets and for labeled trees. An element u of the semigroup (U,⊕)
where ⊕ is an associative composition operator on U , can be factorized into factors
u1...un, such that each factor ui ∈ U and u1 ⊕ ... ⊕ un = u. Then (x, y, z, t) ∈ (U,⊕)
form an analogical proportion x : y :: z : t if and only if there exists some factorizations
of x1 ⊕ ...⊕ xd = x (and similar for y, z and t) such that ∀i, (yi, zi) ∈ {(xi, ti), (ti, xi)}.

This definition can be instantiated to analogical proportions on strings over finite
alphabets, where U becomes the alphabet and ⊕ the concatenation operator. Yvon

76

input = acrobatically ; output =
Adv

Adj

N

acrobat

Adj|N

ic

Adv|Adj

ally

Figure 6.1: Instance for task 2 in Stroppa and Yvon (2005)

(2003) describes an efficient solver for analogical equations on strings based on finite-
state transducers.

Similarly for labeled trees, analogical proportions can be defined if a binary asso-
ciative operator on trees is defined such as substitution. In order to solve analogical
proportions on trees Stroppa and Yvon (2005) propose to linearize trees into parenthe-
sized strings and use the solver for strings.

Stroppa and Yvon (2005) describe an application of analogical learning to two
morphological tasks. The first task is to predict vectors of features associated with
isolated wordforms. Each vector consists of the lemma, part of speech and various part-
of-speech-dependent morphological features such number, gender, case, tense, mood
etc. A training example for English would be: input=replying, output={reply,V-pp--}.

The second task is similar to that undertaken in (van den Bosch and Daelemans,
1999) above, i.e. morphological segmentation. An example input-output pair for En-
glish for this task is shown in Figure 6.1.

The German, English and Dutch CELEX database was used for task 1. For task
2 only the English data was used. For each experiment they performed 10 runs and
tested on 1,000 randomly picked instances. Generalization performance was measured
as follows: per instance precision was computed as the proportion of correct hypothesis.
Per instance recall was the proportion of correct solutions that were predicted by the
system. Those two scores were averaged over over the test set, and averaged over the
10 runs. The results are summarized in Tables 6.2 and 6.3.

The authors note that high generalization performance is manifest for data with rich
inflectional paradigms such as all German data. On the other hand for categories such
as English adjectives the results are poor. They attribute this effect to the fact that
in order to make search tractable instances are divided into bins based on inflectional
categories – the performance could be improved for English adjectives by using bins
based on derivational rather than inflectional families.

The methods for supervised learning of morphology described above all have in
common the fact that for a given word form they are able to generate the corresponding
lemma (or root or stem) for unseen words.

Another common method of performing data-driven morphological analysis does not
have this property. In this approach morphological analysis is treated as a sequence

77

English

Recall Precision
Nouns 75.26 95.37
Verbs 94.79 97.37
Adjectives 27.89 87.67

Dutch

Nouns 54.59 74.75
Verbs 93.26 94.36
Adjectives 90.02 95.33

German

Nouns 77.32 81.70
Verbs 90.50 90.63
Adjectives 99.01 99.15

Table 6.2: Results for task 1 in Stroppa and Yvon (2005)

Recall Precision

Morphologically complex 46.71 70.92
Other 17.00 46.86

Table 6.3: Results for task 2 in Stroppa and Yvon (2005)

labeling task, i.e. a generalization of part of speech tagging. The labels encode mor-
phosyntactic features. A lexicon which maps wordform-label pairs to lemmas is then
used to perform lemmatization, which has the disadvantage that words not present in
the lexicon cannot be lemmatized. This problem is solved by (Erjavec and Džeroski,
2004) by learning morphological analysis in two steps, first learning a morphological
labeling model from running corpus text, and then learning a lemmatization model
from a full form lexicon. The output of the first model is used by the second model.

In the following section I briefly review research on morphological tagging and on
disambiguation of morphological analyses; this is relevant to Section 6.4 which presents
a novel method of combining data driven morphological analysis with lemmatization,
different to the approach used by (Erjavec and Džeroski, 2004).

6.2.4 Morphological tagging and disambiguation

Morphological tagging is a data-driven approach to morphological analysis which treats
the task in terms of sequence labeling: i.e. it is modeled on the POS tagging framework.
Morphological information is encoded in a tag, (sometimes called a morphosyntactic
description, MSD) associated with the word form, and the system learns to predict
those sequences of MSDs from annotated data. The main challenge here is dealing
with morphologically rich languages where the number of unique tags is in the hundreds
or thousands. This creates scaling issues for many machine learning approaches, and

78

data-sparseness problems for those that do scale.
In order to alleviate those issues it is common to restrict MSD tagging to disam-

biguating candidate analyses proposed by a rule-based morphological analyzer, or a
large morphological lexicon. It has also proved useful to predict the features encoded
in the tags separately and combine those factored decisions to choose the full MSD tag.

Research using such approaches has been carried out initially mostly for East Euro-
pean languages. Hajič and Hladká (1998) describe a disambiguating tagger for Czech
which uses an efficient exponential probabilistic model. Hajič (2000) adapts this model
to other Easter European languages and investigates the issue of the relative usefulness
of morphological dictionaries versus annotated corpora (cf. Section 6.4.5).

Tufiş (1999); Tufiş and Dragomirescu (2004); Ceauşu (2006) propose the approach
of tiered tagging and apply it to Romanian. The idea is to reduce the original rich
tagset to a smaller one, train the tagger on the reduced tagset, and recover the original
tags in a second-stage postprocessing step, which involves either application of hand
written rules and dictionary lookup, or in the most recent paper, a second-stage tagger
which uses the predicted reduced tags as input to recover the original ones.

More recently the tag disambiguation approach has been applied to Korean (Han
and Palmer, 2004), Arabic (Habash and Rambow, 2005), and Turkish (Hakkani-Tür
et al., 2002; Yuret and Türe, 2006). Due to the morphological complexity of those lan-
guages, those systems use an online morphological analyzer rather than a precompiled
dictionary as the source of analysis candidates.

There are varying ways of dealing with lemmatization associated with these ap-
proaches: either ignore it altogether (Hajič and Hladká, 1998), rely on the morphologi-
cal analyzer or dictionary to provide it (this leaves the problem of unknown words) or,
as discussed in the previous section, treat it in a second stage (Erjavec and Džeroski,
2004).

In Section 6.3 I first present a method of learning lemmatization using only running
text annotated with lemmas. This model learns some morphosyntactic features implic-
itly in order to predict lemmas, although such features are not explicitly present in the
training data and are not output by the model. This is a useful mode of operation
when disambiguated morphosyntactic labels are not available and it serves as a proof
of concept for learning lemmatization in the classification setting.

In Section 6.4 I then show how to combine this lemmatization method with mor-
phological tagging in an integrated model which predicts probability distributions over
sequences of morphological tag-lemma pairs. This can be seen as an alternative, ar-
guably simpler and more general approach to the two step method proposed by Erjavec
and Džeroski (2004) for Slovene.

6.3 Simple Data-Driven Context-Sensitive Lemmatization

6.3.1 Lemmatization as a classification task

Many successful machine-learning methods require that the task to be performed be
cast as classification. The training data should consist of a collection of examples with
assigned class labels. The algorithms learn to assign those labels to new examples. Here
I show how lemmatization can be easily adapted to the classification setting, given some
reasonable assumptions about the data.

79

It is not immediately obvious what the class labels should be for the task of lemmati-
zation. In principle, lemma classes could be specified manually, on the basis of analysis
of inflectional or derivational paradigms for a given language. This works but is labor-
intensive.

The approach I propose is to derive the classes automatically from training data.
Instead of inspecting data to identify and specify paradigms we try to automatically
discover recurring patterns in the mappings form word forms to lemmas.

I present a very simple class-inference mechanism based on the idea of the edit
script between two strings . An edit script specifies what transformations should be
applied to the input string in order to obtain the output string. There are many
possible string operations and many ways of specifying them in an edit script. Here I
will concentrate on one simple instantiation of this idea: an edit-list (Myers, 1986;
Aho et al., 1976; Hirschberg, 1977). An edit-list of sequences w and w′ is a list of
instructions (insertions and deletions) which, when applied to sequence w, transform
it into sequence w′. An instruction specifies whether an insertion or a deletion should
be performed, at which position in sequence w, and which element is to be inserted
or deleted. As an example consider the strings w = pidieron and w′ = pedir1. An
edit-list which transforms w into w′ is (〈D, i, 2〉, 〈I, e, 3〉, 〈D, e, 5〉, 〈D, o, 7〉, 〈D, n, 8〉).
This is interpreted as

• delete character i at position 2

• insert character e before position 3

• delete character e at position 5

• delete character o at position 7

• delete character n at position 8

I use the edit-list between word forms and their lemmas as class labels.
One nuance is that in the majority of languages inflectional morphology is mostly

suffixal, i.e. it affects the endings of words, or occasionally material in word roots,
rather than the beginning.2 This means that edit-lists will work better as classes
if we index characters starting at the end of the string rather than at the begin-
ning, or equivalently if we compute the edit-list on reversed strings. For example
if we compute editlist(repitieron, repetir)3 we will not get the same edit-list as for
the example above (as all indices will be incremented by 2). However on reversed
strings, editlist(noreidip, ridep) and editlist(noreitiper , riteper) give the same result
{〈D, n, 1〉, 〈D, o, 2〉, 〈D, e, 4〉, 〈D, i, 7〉, 〈I, e, 8〉}. This accords with the linguistic notion
that the strings pedir and repetir are forms of Spanish verbs which occupy the same
position in the verb inflection paradigm of the same conjugation class. If our as-
sumptions about inflectional morphology hold, i.e. if it is predominantly suffixal, such
agreement should happen frequently. I will refer to this adjusted version of the edit list
as reverse-edit-list.

1pidieron is the 3rd person plural preterite form of the verb pedir, ask in Spanish.
2Celtic languages such as Irish or Welsh are a well-known exception.
3repitieron is the 3rd person plural preterite form of the verb repetir, repeat in Spanish.

80

Feature notation Description

f0n , n = |f0| − 12 · · · |f0| − 1 The last 12 characters of the word form
f0 The target token word form (treated atomically)
fn, n ∈ {−3,−2,−1, 1, 2, 3} Word forms of preceding and following 3 tokens

Table 6.4: Feature notation and description for lemmatization

6.3.2 Experiments

I have performed a series of experiments on a range of languages and data sets to
evaluate how this idea works in practice.

Data

I have used lemma-annotated corpora in eight languages.

• Spanish, Cast3LB Civit and Mart́ı (2004)

• Catalan, Cat3LB Civit et al. (2004)

• Portuguese, Bosque 7.3, Afonso et al. (2002)

• French, Paris-7 Treebank, Abeillé et al. (2003)

• Polish, Polish Frequency Corpus, Section B - Press, Bień and Woliński (2003)

• Dutch, Alpino Treebank, van der Beek et al. (2002)

• German, Tiger Treebank, Brants et al. (2002)

• Japanese, Kyoto Text Corpus, Kurohashi and Nagao (2003)

For each corpus I took 10,000 tokens as the test test, another 10,000 tokens as devel-
opment set, and 70,000 as training set.

In the Japanese corpus the word forms appear in Kanji and the lemmas in Hiragana.
Since the method needs data written in the same script, and preferably an alphabetic
one, I convert both Kanji and Hiragana to Romaji using the Kakasi software package.4

I have not evaluated the accuracy of the conversion so there may be some noise in our
Japanese results.

Methodology

For each language I use the same set of features, the presented in Table 6.3.2. Example
features extracted from a Spanish sentence are shown in Table 6.3.2.

4Available for download at http://kakasi.namazu.org/. I would like to thank Masanori Oya for
pointing out Kakasi to me and for help with the conversion.

81

Left context Focus Focus chars Right context Class

f−3 f−2 f−1 f0 f0|f0|−12
· · · f0|f0|−1

f1 f2 f3

que el presidente recibiera ---recibiera cientos de miles (Da0,De2)
el presidente recibiera cientos -----cientos de miles de (Ds0)

presidente recibiera cientos de ----------de miles de dólares ∅
recibiera cientos de miles -------miles de dólares de (Ds0,De1)

cientos de miles de ----------de dólares de regalo ∅
de miles de dólares -----dólares de regalo de (Ds0,De1)

T
ab

le
6.5:

E
x
am

p
le

featu
res

for
lem

m
atization

ex
tracted

from
a

S
p

an
ish

sen
ten

ce

82

Baseline Acc. Accuracy Precision Recall F-score

Catalan 66.33 97.27 95.91 93.40 94.64

German 52.64 95.11 94.61 92.03 93.31

Polish 48.61 95.06 93.75 91.96 92.84

Spanish 69.50 96.44 92.32 92.65 92.48

Japanese 88.42 98.36 94.05 88.77 91.33

Portuguese 71.74 96.38 91.85 90.58 91.21

French 61.88 94.36 92.16 87.93 89.99

Dutch 78.80 94.15 85.38 79.62 82.40

Table 6.6: Lemmatization evaluation for eight languages

In the experiments I use the LIBSVM implementation (Chang and Lin, 2001) of
Support Vector Machines (Boser et al., 1992; Vapnik, 1998), which implements the one-
against-one strategy for non-binary (multi-class) classification. I binarize the features
described above for use with the SVM: i.e. each original feature-value combination is
mapped to a new binary feature.

I use the Radial Basis Function kernel. The parameters C (32768) and γ (3.05 ×
10−5) were chosen by cross-validation on the Spanish development set. Because I did not
repeat feature selection and parameter tuning separately for each language, my results
may underestimate the potential performance of our method for languages other than
Spanish.

When calculating the reverse-edit-list for word form - lemma pairs, both strings
were lowercased and embedded quotes (occasionally found in German compound words)
were removed. These simplifications reduce the number of classes and make the learning
task easier. Also, lemma capitalization is ignored for evaluation.

6.3.3 Evaluation results and error analysis

Table 6.6 presents the results of evaluation for all the languages on the test sets. The
most straightforward performance metric is token accuracy: i.e. what proportion of
tokens were correctly lemmatized (shown in the second column). Depending on the
data set, high accuracy can be achieved by simply returning the word form (the baseline
method). E.g. for Japanese, where the only open-class words which inflect are verbs,
the baseline method give 88.42% accuracy on the test set. Baseline accuracies are
shown in the first column. The second column shows accuracies: for all the data sets
they are above 94%, with the highest score for Japanese at 98.36%.

To give a more informative indication of the performance I also calculate precision,
recall, and the harmonic mean of those two, the f-score. For those metrics I consider
the empty reverse-edit-list, i.e. when the lemma is equal to the word form, as the
null class. The number of correct lemmas, excluding the nulls, are the true positives.
Recall is then calculated by dividing the number of true positives by the number of
non-null lemmas in the gold standard, whereas precision is the number of true positives

83

Baseline Acc. Accuracy Precision Recall F-score

Polish 26.31 80.29 81.73 77.53 79.58

Spanish 58.75 86.35 77.97 79.39 78.67

Portuguese 58.58 85.17 76.35 70.32 73.21

Catalan 60.16 82.99 76.11 66.05 70.72

German 55.95 78.88 72.02 62.80 67.09

Japanese 78.96 89.54 74.62 59.88 66.44

French 55.80 76.83 71.42 55.71 62.60

Dutch 66.42 72.40 46.82 31.33 37.54

Table 6.7: Lemmatization evaluation for eight languages – unseen word forms only

divided by the number of non-nulls among the predicted lemmas.
Except for one case, the f-scores cluster between 90% and 95%, even though base-

line accuracies range from under 50% to almost 90%. Thus even though the languages
represent varying degrees of inflectional richness, this has limited impact on the per-
formance of the reverse-edit-list-based lemmatization method.

There is one outlier, however: for Dutch the f-score is over 7% worse than the next
best result. I suspect that this is due to the fact that for this dataset the assumption
of predominantly suffixal inflection does not hold. It turns out that there are many
tokens in the Dutch corpus where mapping the wordform to lemma involves changes
to the beginning of the string, often involving moving an initial part of the wordform
to the end. This happens in the case of separable prefix verbs such as: lesgegeven
→ geef les (teach class) or meelopen → loop mee (run with). In those two examples
the lemma is the verb inflected for present first-person singular, with the separable
particle following it. Even more problematic are cases where the separable prefix that
appears at another point in the utterance is appended at the end of the lemma, e.g.
the sequence of word forms we trokken erop uit (we went out) is lemmatized as follows:
〈we, trek uit, erop, uit〉. Another non-final transformation involves compound words,
where the compounding morpheme -s is replaced by an underscore in the lemma:
verbrandingsmotor → verbranding motor (internal combustion engine). It is clear that
for such transformations classifying examples by reverse-edit-list is not sufficient.

It is also evident, however, that for many datasets such cases are rare and the
simple method shows remarkable high performance. The problems with lemmatizing
the Dutch corpus are only partly caused by the features of the language itself. Equally
important are the choices made by corpus designers. This can be seen by comparing the
results for Dutch to those on the closely related language German, which also has verbs
with separable prefixes and the compounding morpheme -s-. However in the German
Tiger treebank separable prefixes which appear elsewhere in the text are not attached
to the verb lemma, and the morpheme -s- does not get replaced by an underscore
in lemmas for compound nouns. For example the sentence Konzernchefs lehnen den
Milliardär als US-Präsidenten ab (Company bosses reject a billionaire for US president)
is lemmatized as 〈Konzernchef, lehnen, der, Milliardär, als, US-Präsident, ab〉 even

84

Base Acc. Accuracy Precision Recall F-score

Freeling all 69.50 95.05 92.78 88.13 90.39
unseen 58.75 82.05 82.58 64.36 72.34

rel+SVM all 69.50 96.44 92.32 92.65 92.48
unseen 58.75 86.35 77.97 79.39 78.67

Table 6.8: Comparison of reverse-edit-list+SVM to Freeling on the lemmatization
task for Spanish

Base Acc. Accuracy Precision Recall F-score

Freeling all 66.33 93.32 93.08 83.93 88.27
unseen 60.16 77.16 86.31 46.13 60.13

rel+SVM all 66.33 97.27 95.91 93.40 94.64
unseen 60.16 82.99 76.11 66.05 70.72

Table 6.9: Comparison of reverse-edit-list+SVM to Freeling on the lemmatization
task for Catalan

though it contains the verb ablehnen with the separable prefix ab. It could be plausibly
argued that in the common “pipeline” approach to language processing finding such
non-local dependencies is best left to the syntactic level of analysis.

Table 6.7 shows the same statistics as Table 6.6 for the subset of word forms not
seen in the training set. There is more variance in these results than for the all-tokens
evaluation and the relative ranking of languages is also different. Understandably, for
all test-sets there is a significant drop in the f-score for the unseen subset. There is
a group of languages where the difference between the f-scores is below 20% (Polish,
Spanish and Portuguese), another group (Catalan, German, Japanese and French)
between 20% and 30%, and again the outlier datapoint of Dutch, where the difference
is of 44%. It remains to be investigated to what degree these differences are a function
of the morphological features of the languages in question and to what extent they
reflect the nature of the particular datasets or treebanks used in this evaluation.

Comparison to Freeling

In order to determine how the reverse-edit-list-based machine-learning approach
to lemmatization compares to more traditional methods, I compare the results of my
method to the performance of a popular analyzer Freeling (version 1.2) (Carreras et al.,
2004)5. Freeling performs a range of language-processing tasks (tokenization, morpho-
logical analysis, named-entity recognition, chunking etc.) for several languages. Below
I compare the two systems on the lemmatization task on the Spanish and Catalan test

5At the time these experiments were performed this was the latest version of Freeling. In Section
6.4.5 the current version, Freeling 2.0, is compared against the complete morphological analysis system
Morfette, which uses the classifier-based lemmatization approach proposed here.

85

Different edit-list better p-value

Spanish 581 360 4.414 × 10−9

Catalan 705 550 2.2× 10−16

Table 6.10: Statistical significance test

sets. Lemmatization in Freeling is based on lexicon lookup combined with disambigua-
tion based on the part of speech tag in cases where the same word form can correspond
to different lemmas. The Spanish lexicon size is about 71,000 word forms. The Catalan
lexicon contains around 46,000 word forms.

In the input to Freeling I keep the original tokenization and sentence splits present in
the corpus data. In the Spanish and Catalan treebanks multi-word expressions, named-
entities, dates and quantities are treated as single tokens – I also keep those tokens,
and consequently deactivate named-entity, multi-word, date and quantity handling by
Freeling.

Tables 6.8 (Spanish) and 6.9 (Catalan) show the results for Freeling and for the
reverse-edit-list-based method using the SVM classifier. I report results on all
tokens and also results on tokens not seen in our training set. For Spanish, my method
outperforms Freeling by about +2% on all tokens, which corresponds to a relative error
reduction of 28%. The +6.33% difference between the systems on the unseen subset of
tokens, gives a relative error reduction of 24%. For Catalan the differences are larger:
+6.37% (50% error reduction) on all tokens and +10.58% (25% error reduction) on the
unseen token subset. The poorer performance of Freeling on the Catalan data probably
reflects its small lexicon size for that language.

Freeling’s lemmatization is not data-driven, and does not use the training data.
The sharp drop in performance it shows for the subset of tokens unseen in the training
material is probably due to the fact that such tokens are relatively uncommon words,
in many cases probably absent from Freeling’s word form lexicon. In those cases,
Freeling simply returns the word form as the lemma, whereas the machine-learning
model generalizes to unseen data and in most cases outputs the correct answer.

To determine how statistically significant the difference between the systems’ per-
formance is, I ran a binomial test on the results for the all tokens comparison. I adopt
a confidence level of 99% (α = 0.01) for these tests.

For each token we check whether the methods give different answers – for these
cases (i.e. the number of trials) we calculate in how many cases the second method
is better than the first (i.e. the number of successes). I then perform the binomial
test with the null hypothesis that the probability of success is chance (= 0.5) and the
alternative hypothesis that the probability of success is greater than chance (> 0.5).
The results are summarized in Table 6.10. For both languages the p-values are much
below α, and statistically significant at that confidence level.

86

6.3.4 Conclusion

The edit script approach to learning to lemmatize running text is appealingly simple
and manages to combine good performace with a high degree of language independence.
Other methods often rely on a large full-paradigm inflectional lexicon, either to perform
word form lookup, or as a training resource. To train the system presented here only a
lemmatized corpus is needed. The system is context-sensitive: it incorporates features
of context words surrounding the target word form to combine lemmatization with
disambiguation.

Though certainly useful, lemmatization without accompanying morphological anal-
ysis is often insufficient. In order to perform lemmatization, the system already has
to learn some implicit morphological classes. For example in order to decide whether
the correct lemma class should map the Spanish word form bases to base (basis) or to
basar (to base) the system has to decide whether the token is more likely to be a verb
or a noun. In Section 6.4 I factor out the learning of morphological features and lemma
classes and investigate how to best reintegrate them in a modular fashion.

As evident from the Dutch results, the reverse-edit-list approach is inadequate
when the assumption of suffixal inflection does not hold. A partial solution to this issue
is offered in Section 6.4.6.

6.4 Morfette – a combined probabilistic model for mor-

phological tagging and lemmatization6

6.4.1 Introduction

In this section I describe and evaluate the Morfette system for data-driven morpho-
logical analysis. The approach follows the decomposition of the task of morphological
analysis into two subtasks: the assignment of morphological features to the word form,
and lemmatization.

Many data-driven approaches to morphology involve encoding morphological fea-
tures as tags (MSDs), and use some sequence labeling method to assign MSD sequences
to sentences. In the case of morphologically rich inflectional or agglutinative languages,
the classification decision is often constrained by the use of an MSD lexicon, or a
finite-state morphological analyzer: in such systems the data-driven component is lim-
ited to performing morphological disambiguation rather than morphological analysis
itself (Hajič and Hladká, 1998; Hajič, 2000; Tufiş, 1999; Tufiş and Dragomirescu, 2004;
Ceauşu, 2006; Han and Palmer, 2004; Habash and Rambow, 2005; Hakkani-Tür et al.,
2002; Yuret and Türe, 2006).

In an MSD disambiguation setting, lemmatization is simple: either the lexicon or
the morphological analyzer already returns the correct lemma corresponding to each of
the candidate analyses. The problematic cases are unknown words: most systems are
able to guess the MSD of an unknown word, but not the corresponding lemma.

As described in Section 6.2.1, Erjavec and Džeroski (2004) solve the problem of lem-
matizing unknown words by using a two stage architecture, first sentences are assigned

6The research presented in this section was done in collaboration with Georgiana Dinu, who helped
develop the edit-tree lemma induction scheme, proposed the prepruning criterion, prepared software
for error analysis and did the error analysis for Romanian data.

87

MSD sequences by a POS-tagger, and then an ILP system assigns lemmas to unknown
wordform-MSD pairs.

In Section 6.3 I described an alternative approach to lemmatization. This method
automatically induces lemma-classes: they correspond to the edit script between word
forms and the corresponding lemmas. Then a standard classifier is used to “tag” words
with their lemma-classes, from which the words’ lemmas can be obtained by “executing”
the edit script on the word forms. Thus in this approach lemmatization becomes just
another instantiation of sequence labeling.

In this section I present a modular, data-driven model which performs both mor-
phological tagging and lemmatization, i.e. it maps a sequence of word forms of length
n to the sequence of MSD - lemma pairs:

M :Wn → (M× Λ)n (6.1)

I use a generic, language-independent feature-set in the models and investigate how
well such an approach generalizes to three morphologically rich languages.

In Section 6.4.2 I present the architecture of the model, the features used and
the search algorithm. In Section 6.4.3 I present experimental evaluation results for
three languages and corpora. Section 6.4.4 contains a brief error analysis. Section
6.4.5 experiments with integrating lexical resources in the system while Section 6.4.6
proposes an alternative version of edit script to use for lemma class induction. Finally
Section 6.4.7 presents conclusions and ideas for further improvements in data-driven
morphological analysis.

6.4.2 The Morfette system

Architecture

The Morfette system is composed of two learning modules, one for morphological
tagging and one for lemmatization, and one decoding module which searches for the
best sequence of pairs of morphological tags and lemmas for an input sequence of word
forms. Both modules learn Maximum Entropy classifiers such as that described for
POS tagging by Ratnaparkhi (1996). For the lemmatization model I use the method of
inducing lemma classes described in Section 6.3. I do not, however, use the features or
the SVM classifier, as that configuration turned out to be impractically slow in practice
and to scale poorly. The primary reason for that is that a SVM is a binary classifier
and to perform multiclass classification one has to decompose that task into a series
of binary classifications and combine them using a method such as one-against-all.
For the large number of classes involved in lemmatizing and MSD-tagging inflectional
languages this is computationally quite expensive.

Features

In the Morfette architecture one can use arbitrary features of the focus word and
the context sentence. I use a rather minimalistic and language-independent feature set
in the experiments reported in Section 6.4.3. This has the advantage of being very
general and using very little domain expertise but obviously for maximum performance
it is desirable to extend and refine it using language and domain specific features.

88

Feature notation Description
MSD-tagging model

f0 Lowercased wordform of the focus token
sn(f0), n = 1 · · · 7 Suffixes of length n
pn(f0), n = 1 · · · 5 Prefixes of length n
sp(F0) Spelling pattern of the (non-lowercased) wordform
s1(m−2)⊕ s1(m−1) Concatenation of the first element of the two previous MSDs
f−2, f−1 Lowercased wordform of two previous tokens
m−2,m−1 (Predicted) MSD of two previous tokens
l−2, l−1 (Predicted) Lemma of two previous tokens
mtrain1

Set of MSDs seen in training data for wordform of next token
Lemmatization model

f0 Lowercased wordform of the focus token
sn(f0), n = 1 · · · 7 Suffixes of length n
pn(f0), n = 1 · · · 5 Prefixes of length n
m0 (Predicted) MSD tag
sp(F0) Spelling pattern7 of the (non-lowercased) wordform

Table 6.11: Feature notation and description for the basic configuration

Initially this basic feature configuration was tested on three languages for which we
had sufficient expertise to perform meaningful error analysis, i.e. Spanish, Polish and
Romanian. The features are described in Table 6.11. Figure 6.2 shows the values of
those features extracted from the following example sentence in Romanian:

Wordform În pereţii boxei erau trei orificii
Lemma ı̂n perete boxă fi trei orificiu
MSD Spsa Ncmpry Ncfsoy Vmii3p Mc-p-l Ncfp-n
Gloss In the walls of the cubicle there were three orifices

(6.2)

In comparison with the features used in Section 6.3, the main difference is that
here word suffixes of length 1 to 7 are represented explicitly whereas before only single
characters were used. This is due to the fact that the SVM classifier when used with
a kernel can automatically model feature conjunctions by implicitly mapping feature
vectors to higher dimensional spaces whereas in the MaxEnt framework they have to
be represented explicitly.

Search

Maximum entropy models predict probability distributions over classes (i.e. MSD-tags
or lemma-classes) for the current focus word form given its context as encoded in the
features. That is for a focus word wi with the context c ∈ C, for each possible MSD-tag
m ∈M the MSD-tagging model gives p(m|c), and for each possible lemma-class l ∈ L

89

f0 sp(F0) p1(f0) p2(f0) p3(f0) p4(f0) p5(f0) s1(f0) s2(f0) s3(f0) s4(f0) s5(f0) s6(f0) s7(f0)

ı̂n Xx ı̂ ı̂n - - - n ı̂n - - - - -
pereţii x p pe per pere pereţ i ii ţii eţii reţii ereţii pereţii
boxei x b bo box boxe boxei i ei xei oxei boxei - -
erau x e er era erau - u au rau erau - - -
trei x t tr tre trei - i ei rei trei - - -
orificii x o or ori orif orifi i ii cii icii ficii ificii -

f−2 l−2 t−2 f−1 l−1 m−1 s1(m−2)⊕ s2(m−1) f+1 mtrain+1

- - - - - - - pereţii { Ncmpry}
- - - ı̂n ı̂n Spsa S boxei {}
ı̂n ı̂n Spsa pereţii perete Ncmpry S+N erau {Vmii3p}
pereţii perete Ncmpry boxei boxă Ncfsoy N+N trei {Mc-p-l}
boxei boxă Ncfsoy erau fi Vmii3p N+V - -
erau fi Vmii3p trei trei Mc-p-l V+M - -

F
igu

re
6.2:

F
eatu

res
ex

tracted
for

th
e

M
S

D
-taggin

g
m

o
d

el
from

an
ex

am
p

le
R

om
an

ian
p

h
rase:

În
pereţii

bo
xei

era
u

trei
o
rifi

cii.

90

the lemmatization model gives p(l|c,m). The context includes the focus wordform as
well as the preceding and following wordforms in the same sentence.

The algorithm is a beam search which maintains a list of n-best sequences of (m, l) ∈
M×L (MSD-tag - lemma) pairs up to the current position in the input word sequence.
The conditional probability of a candidate sequence of words w0..wi is given by

P (m0..mi, l0..li|w0..wi) = p(li|ci,mi)p(mi|ci)P (m0..mi−1, l0..li−1|w0..wi−1) (6.3)

The search proceeds as follows: for focus word wi there are n (n being the beam size)
highest probability sequences ((m0, l0)..(mi−1..li−1)). For each of those sequences we
obtain a MSD-tag probability distribution from the MSD-tagging model. For efficiency
reasons we pre-prune this set of tags: given the list of tag probabilities (m0, p0)..(mj , pj)
sorted in decreasing order, we keep all the tags m0..mi where pi satisfies the condition:

pi/

i
∑

k=0

pk < T,

where T is a threshold parameter.
Each of the retained morpho-tags for word wi is added to each candidate sequence

and for each of those combinations we obtain lemma-class probability distribution from
the lemmatization model. The lemma-class set is pruned according to the same method
as for MSD-tags. The probability of candidate sequences is updated according to
Equation 6.3, the n highest ranking candidate sequences for w0..w1 are retained and
the algorithm proceeds to word wi+1.

6.4.3 Evaluation

For evaluation I chose three morphologically rich languages for which we had expertise
to perform error analysis. I have not tuned the features or parameters of our system
to any particular dataset. At this stage the focus is not necessarily on improving on
the best published results for a particular language; rather the objective is to see how
well the system performs with a minimalistic feature set and no language-dependent
engineering effort and identify the main source of mistakes for each language.

I use the following data sets:

• Romanian: Multext-EAST corpus (Erjavec, 2004), approx. 13,500 tokens
(chapters 1-3) as a test set, approx. 11,800 tokens (chapters 5 and 6) for de-
velopment and 88,000 tokens (chapters 7-23) for training.

• Spanish: AnCora treebank (Mart́ı et al., 2007), approx. 10,000 tokens each for
test and development set, and approx. 168,000 tokens for the full training set,
and approx. 70,000 for the small training set.

• Polish: Korpus S lownika Frekwencyjnego (IPI PAN)8, 10,000 tokens each for test
and development sets, and approx. 219,000 for full training set, and approx.
70,000 for the small training set.

8Available at http://korpus.pl/index.php?page=download

91

Unseen word ratio

Spanish 13.05
Romanian 8.77
Polish 20.39

All words

MSD-tagging Lemmatization Joint

Spanish 94.33 97.84 93.83
Romanian 96.83 97.78 96.08
Polish 81.87 93.29 81.19

Seen words

MSD-tagging Lemmatization Joint

Spanish 97.26 99.14 97.22
Romanian 97.81 99.21 97.77
Polish 86.96 97.48 86.81

Unseen words

MSD-tagging Lemmatization Joint

Spanish 74.79 89.20 71.26
Romanian 86.68 82.88 78.50
Polish 61.93 76.88 59.17

Table 6.12: Evaluation results with the basic model with small training set for Span-
ish, Romanian and Polish

The small training set was used in order to be able to have similar training set sizes
across the three languages. Additionally for Polish and Spanish the full set contains
all the available data. No more training data is available in the Romanian corpus.

The Polish data set contains some tokens which have not been disambiguated: I
filtered out all sentences containing such tokens.

For all the experiments reported in the following sections a beam size of 3 was used,
with the prepruning threshold set to 0.3: validation on the development sets showed
that those settings give good results for all the languages.

Table 6.12 shows the evaluation results for the small training set for all three
languages. Table 6.13 shows the results for Spanish and Polish, for which there is a
larger training set available. Note that for seen and unseen tokens in Table 6.13, if we
subtract the improvement in brackets from the scores, we do not get the score in Table
6.12: this is because in Table 6.13 the set of seen and unseen tokens is computed with
reference to the full training set, while in Table 6.12 it is in reference to the small
training set.

More data is clearly beneficial: the scores improve substantially for both languages.
Both the morphological tagging and lemmatization score for Polish is lower than for
the other two languages: this is to be expected for a Slavic language with a rich
inflection and high ambiguity. In the following Section I present a summary of the
most common errors detected on the development set using the models trained with

92

Unseen word ratio

Spanish 8.77
Polish 12.92

All words

MSD-tagging Lemmatization Joint

Spanish 95.40 (+1.07) 98.52 (+0.68) 95.02 (+1.19)
Polish 84.91 (+3.04) 95.55 (+2.26) 84.44 (+3.25)

Seen words

MSD-tagging Lemmatization Joint

Spanish 97.29 (+0.77) 99.22 (+0.48) 97.25 (+0.92)
Polish 87.74 (+2.85) 97.69 (+1.93) 87.60 (+3.09)

Unseen words

MSD-tagging Lemmatization Joint

Spanish 75.71 (+4.22) 91.22 (+2.74) 71.84 (+3.99)
Polish 65.87 (+4.33) 81.11 (+4.49) 63.16 (+4.33)

Table 6.13: Evaluation results with a full training set for Spanish and Polish. Numbers
in brackets indicate accuracy improvement over the same model trained on the small
training set

the basic configuration.

6.4.4 Error analysis

We performed detailed error analysis for morphological tagging and lemmatization for
Spanish, Romanian and Polish. In this section I summarize the results of this analysis
and suggest possible ways of dealing with some of the common errors our systems
makes.

Errors in morphological tagging and lemmatization tend to co-occur: often an in-
correctly assigned morphological category triggers lemmatization which is consistent
with this category but incorrect given the gold MSD. I will therefore discuss the issues
related to both morphological tags and lemma-class tags jointly.

Named entities A common source of errors in Spanish and Romanian is failure to
detect proper names (the tagset used in Polish does not have a separate tag for proper
nouns). This results in the assignment of the wrong morphological tags and sometimes
also the wrong lemma-class. For example in Spanish certain person or place names, such
as Reyes or Chiapas have the plural suffix but, unlike for common nouns, their correct
lemma-class should not delete it. Poor performance in this area is to be expected as my
focus here is on learning morphological structure and not on detecting and classifying
named entities. The only feature designed to capture some characteristics of those is
sp(F0), the spelling pattern feature, which is clearly very rudimentary. In order to deal
with named entities properly a dedicated module would be probably the best solution.

93

Suffix ambiguity A problem for all the three languages is suffix ambiguity, i.e.
certain word endings can be indicative of more than one morphological category. In
Spanish and Romanian, nouns and adjectives are difficult to distinguish based only on
word endings and are sometimes mistagged and mislemmatized. This tends to happen
mostly in constructions with adjectives preceding nouns, e.g. Spanish cruenta lucha
“bloody battle”, which are rare and marked in comparison to adjectives post-modifying
the noun.

In Romanian third person singular verbs in the imperfect tense have the same ending
as nouns marked with a definite feminine article, and are also sometimes misclassified.9

Syncretism This is an especially frequent error type for Polish. Sometimes different
grammatical cases of the same lexical item have the same form, e.g. feminine genitive
singular noun forms and feminine genitive plural forms or masculine singular nominative
and accusative.

There is sometimes genuine semantic ambiguity in the sentence but in many other
cases, especially for number ambiguity, the correct morphological tag can be determined
from context, but the system fails to do so. The determination of the right grammatical
case is more difficult as it often involves non-local dependencies on the head verb or
preposition and is unlikely to be solved completely by examining local context only.

Ambiguous function words Some high frequency function words are ambiguous:
Spanish que (coordinating conjunction or relative pronoun), se (third person pronoun
or impersonal pronoun); Romanian a (infinitive particle or a form of auxiliary avea,
“have”), lui and o (article or pronoun); Polish na (locative or directional preposition).
These distinctions are based on function rather than form and can be difficult to de-
termine locally.

Annotation problems A nonnegligible number of errors in both morphological tag-
ging and lemmatization are actually mistakes or inconsistencies in the training and test
data. In the Polish dataset de-verbal nouns such as dzia lanie are sometimes tagged as
nouns and sometimes as “gerunds” (where the corresponding lemma is the verb in-
finitive). There seems to be no consistent pattern to which tag is used when. Some
Spanish plurals are assigned incorrect lemmas in the corpus.

Prefixal morphology Even though in the languages we examined inflectional mor-
phology is almost exclusively suffixal, Polish offers one isolated but important exception.
The superlative form of adjectives is formed by attaching the prefix naj- to the (already
inflected) comparative form. Thus the comparative of wysoki, “tall”, is wyższy, and the
superlative is najwyższy. Since lemma-classes are computed by the reverse-edit-list,
this class induction method fails to generalize over word initial transformations. As a
result, lemmas for superlatives are correct only in the case of very frequent words, and
in general are not predicted correctly.

From the evaluation and error analysis performed for three languages I have found
that some error categories occur in all three languages; others are language and corpus

9This affects only the written language as in speech those two forms differ in stress, which is not
represented in the spelling.

94

specific. I suspect that the error classes which mostly affect unknown words could be
dealt with successfully by (i) providing more training data, (ii) exploiting additional
resources in conjunction with annotated corpora, such as lexicons – I explore this option
in Section 6.4.5

Other problems such as nominal/accusative syncretism or some ambiguous func-
tion words are more of a challenge, and although some improvement may be obtained
by using more context and smarter features, it may be necessary to defer ambiguity
resolution until a full syntactic structure is built.

Finally, the lemma-class induction mechanism is biased to dealing with suffixal mor-
phology exclusively. In Section 6.4.6 I explore an alternative edit-script instantiation
which is not as heavily biased to suffixal morphology as the reverse-edit-list used
so far.

6.4.5 Integrating lexicons

We have seen that several of the common mistakes the system makes are due to un-
known words in ambiguous contexts: given only the local context and features of the
wordform sometimes there are more than one roughly equally plausible analysis for a
certain token. The most obvious solution to this is to use more annotated data; how-
ever there are two issues here. First it is not always easy to obtain or produce large,
high-quality morphologically annotated corpora. The second issue is the Zipfian nature
of word frequency distribution in natural language, which means that even given a very
large corpus many wordforms will be not appear or will appear only once.

The second most obvious solution is to try to leverage an alternative source of
morphologically annotated data, namely morphological lexicons. In comparison to
corpus data, morphological lexicons are a more impoverished source of information:
they associate wordforms to the set of possible analyses, without taking context or
relative frequency into account.

On the other hand it is easier to provide coverage of uncommon words by means
of including them in a lexicon than by annotating very large corpora with their rich
contextual and frequency information. Hajič (2000) shows how for five languages the
use of dictionaries is more helpful than more annotated corpus data in alleviating data
sparseness. In the title of his paper he contrasts “data” vs “dictionaries”, but obviously
dictionaries are just another kind of annotated data that we can exploit in a supervised
learning paradigm: those two kinds of data offer different trade-offs in terms of coverage
vs. richness of information. In this section I investigate whether exploiting them both
in an integrated fashion would let us take advantage of the strong points of both and
improve overall morphological analysis results.

Dictionary features

There are several options to exploit morphological dictionaries in a MSD tagging model.
Perhaps the most common one is to treat the dictionary as a source of possible analyses
and let the model simply choose one of them, or disambiguate. This assumes that the
dictionary has very large coverage and is of high quality – also some provision needs to
be made for the unavoidable cases of unknown words. In this approach the dictionary
is a trusted, primary resource, whereas the annotated corpus provides frequency statis-

95

tics which help disambiguate ambiguous wordforms. This is a well-known and well
understood approach; here I use an alternative method: the dictionary information is
incorporated into an overall MaxEnt model by means of dedicated features. Specifi-
cally, I take the basic model and modify it to incorporate dictionary information; the
resulting model is called basic+dict:

• MSD model:

– The feature mdict0 is added: this is the set of MSD tags which the focus
wordform occurs with in the dictionary.

– The feature mtrain1
is replaced with mdict1 : this is the set of MSD tags which

the wordform of the following token occurs with in the dictionary. The new
feature with MSDs extracted from the lexicon rather than from training
tokens should more completely encode the ambiguity class of the following
wordform.

• Lemmatization model:

– The feature edict0 is added: this is the set of lemma classes (edit scripts)
computed between the word form and the set of corresponding lemmas in
the dictionary

This approach has the advantage that it automatically adjusts to the size, nature
and quality of the available lexical resource: as the dictionary features are just one of
several kinds of sources of information, the classifier learns to to assign them more or
less importance depending on how useful they are in predicting the class label. An ad-
ditional advantage is that the MSD tagset used, and the choices made in lemmatization,
need not be the same for the annotated corpus and the dictionary: as long as they are
correlated, the inclusion of dictionary features can be helpful. On the other hand this
integration means that the model might sometimes make decisions inconsistent with
the set of possibilities in the dictionary, which may be undesirable in the case when it
gives very high coverage and high quality analyses.

Experiments with dictionaries

Here I experiment with the following two dictionaries for Spanish

• dict-small: Dictionary included in Freeling 1.2. It contains over 71,000 word
forms

• dict-large: Dictionary extracted from the Spanish Resource Grammar project.10

It contains over 556,000 word forms (it is included in the Freeling 2.0 distribution)

The dictionaries do not include proper names. Both dictionaries use the same tagset,
which is also the same as the one used to annotate the AnCora corpus.

Tables 6.14 and 6.15 summarize the evaluation results.
For the small training set the use of the lexicon gives a large relative error reduction

for lemmatization (31.02% and 35.65% for dict-small and dict-large respectively),

10http://www.upf.edu/pdi/iula/montserrat.marimon/srg.html

96

All words

MSD-tagging Lemmatization Joint

dict-small 94.93 (+0.60) 98.51 (+0.67) 94.43 (+0.60)
dict-large 95.25 (+0.92) 98.61 (+0.77) 94.76 (+0.93)

Seen words (in training)

MSD-tagging Lemmatization Joint

dict-small 97.45 (+0.18) 99.42 (+0.29) 97.40 (+0.18)
dict-large 97.49 (+0.23) 99.38 (+0.24) 97.47 (+0.25)

Unseen words (in training)

MSD-tagging Lemmatization Joint

dict-small (n=1305) 78.16 (+3.37) 92.41 (+3.22) 74.64 (+3.37)
dict-large (n=1305) 80.31 (+5.52) 93.49 (+4.29) 76.70 (+5.44)

Unseen words (in training or dictionary)

MSD-tagging Lemmatization Joint

dict-small (n=831) 72.92 (+0.12) 92.90 (+0.24) 70.04 (+0.48)
dict-large (n=509) 64.83 (+1.18) 92.34 (+1.57) 60.31 (+1.57)

Table 6.14: Evaluation results of the basic+dict model with the small training
set with lexicons of various sizes for Spanish. Numbers in brackets indicate accuracy
improvement over the basic model with the same training set

All words

MSD-tagging Lemmatization Joint

dict-small 95.69 (+0.29) 98.81 (+0.29) 95.32 (+0.30)
dict-large 95.67 (+0.27) 98.98 (+0.46) 95.33 (+0.31)

Seen words (in training)

MSD-tagging Lemmatization Joint

dict-small 97.38 (+0.09) 99.41 (+0.19) 97.36 (+0.11)
dict-large 97.16 (−0.13) 99.41 (+0.19) 97.14 (−0.11)

Unseen words (in training)

MSD-tagging Lemmatization Joint

dict-small (n = 877) 78.11 (+2.39) 92.59 (+1.37) 74.12 (+2.28)
dict-large (n = 877) 80.16 (+4.45) 94.53 (+3.31) 76.51 (+4.68)

Unseen words (in training or dictionary)

MSD-tagging Lemmatization Joint

dict-small (n = 666) 74.92 (+0.15) 92.49 (−0.75) 71.02 (+0.00)
dict-large (n = 433) 68.59 (+1.62) 92.61 (+0.69) 63.28 (+1.39)

Table 6.15: Evaluation results of the basic+dict model with the full training set
with lexicons of various sizes for Spanish. Numbers in brackets indicate accuracy im-
provement over the basic model with the same training set

97

Freeling - All words

MSD-tagging Lemmatization Joint

dict-small 91.51 94.73 89.44
dict-large 92.58 (+1.07) 96.55 (+1.81) 91.86 (+2.42)

Table 6.16: Evaluation results for Freeling with two different dictionaries

and a smaller but still respectable reduction for MSD tagging (10.58% and 16.23%)
and joint analysis (9.72% and 15.07%). It seems that the additional benefit from using
an over 7 times larger lexicon is relatively small – most improvement seems to come
from information covered in the smaller resource. As expected, the dictionary features
help predict the analysis for words unseen in the training corpus, but have little effect
on words unseen in either the corpus or the lexicon (the small improvements for those
words are not statistically significant, with p-values > 0.5 according to binomial test).

For the full training set there are still large relative error reductions for lemmati-
zation (19.59% and 31.08%), especially for dict-large. The improvements for MSD
tagging and joint analysis for all words are smaller, around 6% relative error reduc-
tion, but statistically significant with p-values below 0.05. It is noteworthy that for all
words, for MSD tagging and for joint analysis the bigger dictionary does not seem to
lead to any further improvement over the smaller one. For words unseen in training
set, all improvements are statistically significant; for those unseen in both corpus and
dictionary the differences are not statistically significant.

Thus, as expected, using annotated data in the form of morphological lexicons in
addition to annotated corpora is beneficial, especially so when using a relatively small
training corpus. Dictionaries, although lacking contextual and frequency information
help alleviate data sparseness in small training sets.

In the next section I compare the performance of the models described here for
Spanish to the morphological analyzer included in Freeling to gain an insight to how the
approach proposed here compares to the more common architecture used by Freeling.

Morfette vs Freeling

I evaluated Morfette against two different Freeling configurations: one using the dict-
small dictionary and one with dict-large. In both cases I use the latest Freeling
version 2.0. As for the evaluations described in Section 6.3 I had to ensure that Freeling
does not retokenize the input in order to be able to compute accuracy: this means that
the Freeling modules for recognition of quantities, numbers, locations and named enti-
ties need to be disabled. Version 2.0 also uses a different analysis for contractions such
as al and del as well as word-final clitics such as in desarrollarlo, which is incompatible
with our training and test set: I postprocessed Freeling output to adjust it. Since Freel-
ing’s treatment of named entities and numbers was disabled, in the evaluation proper
names, numbers, dates and also punctuation were ignored: i.e. all tokens whose gold
MSD starts with one of np, w, z, ao, f were filtered out prior to evaluation.

Table 6.16 shows the Freeling scores with the two dictionaries described previously.

98

Morfette - All words

MSD-tagging Lemmatization Joint

basic small 95.88 (+3.30) 97.78 (+1.23) 95.52 (+3.66)
basic+dict-large full 97.32 (+4.75) 99.10 (+2.55) 97.17 (+5.31)

Table 6.17: Evaluation results for Morfette in two configurations. The numbers in
brackets indicate improvement over Freeling with dict-large

Table 6.17 shows the scores obtained in the same way as for Freeling, i.e. ignoring the
MSDs described above, for two Morfette configurations: basic trained on the small
corpus, and basic+dict with dict-large trained on the full corpus. The scores are
given for all words only, and not for unseen and seen words. This is because Freeling
does not use the same training set as Morfette; rather the default POS tagging model
which comes with Freeling is used.11

The first observation is that in the case of Freeling the difference in the dictionary
size between dict-small and dict-large translates into more pronounced score im-
provements than what we saw for Morfette. The second is that even the resource-light
Morfette configuration gives substantial error rate reductions over Freeling with the
large lexicon: 44.44% and 35.66% for MSD tagging and lemmatization respectively.
The differences are even more pronounced between the resource rich Morfette config-
uration and the best Freeling numbers: 63.93% and 73.90% error reduction for MSD
tagging and lemmatization respectively.

Freeling is a mature and widely used system which efficiently performs a large array
of useful language processing tasks, and it has not been tuned specifically to joint MSD
tagging and lemmatization. It also has a very simple lookup approach to lemmatization.
Given that, the fact that my dedicated approach outperforms it is hardly surprising.
On the other hand Morfette’s feature set is quite generic, the annotated resources
it was trained on are relatively small in size, and relatively little effort was expended
for tuning the system. Thus the large gains over Freeling inspire confidence that the
approach is on the right track.

6.4.6 Improving lemma class discovery

As noticed in Section 6.4.4 the reverse-edit-list version of edit script makes it
is difficult to induce sufficiently general lemma classes for cases where morphology
affects word beginnings rather than, or in addition to, word endings. In this Section I
investigate whether another instantiation of edit script which makes less assumptions
about where in the string morphological changes take place can improve lemma class
induction and help boost lemmatization results.

11I tried retraining Freeling’s POS tagging model on the same data as used to train Morfette, but
the results turned out to be slightly worse.

99

Edit tree

The problem with reverse-edit-list is that it always indexes edits starting from the
end of the string: this means that lemma classes involving prefixation are not general:
they unnecessarily depend on the word length. Edit-tree is a variation of edit script
which indexes prefixes relative to the beginning of the string and suffixes relative to
the end.

The idea is to find the longest common substring (LCS) between the form w and
the lemma w′. We know that the portions of the string in the lemma before (prefix)
and after (suffix) the LCS need to be modified in some way, while the LCS (stem) stays
the same. If there is no LCS, then we simply record that we need to replace w with
w′. As for the modifications to the prefix and the suffix, we apply the same procedure
recursively: we try to find the LCS between the prefix of w and the prefix of w′: if we
find one, we recurse again; if we do not, we record the replacement; we do the same for
the suffix. So for example the edit-tree of the Polish form-lemma pair najtrudniejszy
and trudny12 is the following:

Split(3, 6)

Replace〈naj, ε〉 Split(5, 0)

Replace〈iejsz, ε〉 Replace〈ε, ε〉

It encodes the following operations:
• Split najtrudniejszy at position 3 and length(najtrudniejszy)− 6 to get the prefix

naj the stem trudn and the suffix iejszy.
Concatenate:

– Replace naj with ε.
– Stem trudn
– Split iejszy at position 5 and length(iejszy) − 0 to get the prefix iejsz, the

stem y and the suffix ε.
Concatenate:
∗ Replace iejsz with ε
∗ Stem y
∗ Replace ε with ε

More formally the Edit-tree can be defined as follows. Let the function lcs :
(Σ∗ × Σ∗)→ (N × N × N× N) take two strings w1..n and w′

1..m and return the 4-tuple
(i, j, k, l) where wi..n−j = w′

k..m−l is the (first) longest common substring of strings w
and w′.

Let the function split : (Σ∗ × N × N) → (Σ∗ × Σ∗ × Σ∗) take the string w1..n, and
indices i and j and return the triple (w1..wi, wi+1..n−j, wn−j+1..n).

The edit-tree is represented by the following recursive sum-of-products type:

EditTree = (Replace : (Σ∗ × Σ∗)) + (Split : (N× N)× EditTree× EditTree) (6.4)

12hardest and hard

100

All words

MSD-tagging Lemmatization Joint

81.94 (+0.07) 93.44 (+0.15) 81.28 (+0.09)
Seen words

86.97 (+0.01) 97.53 (+0.05) 86.83 (+0.03)
Unseen words

MSD-tagging Lemmatization Joint

62.22 (+0.30) 77.42 (+0.54) 59.52 (+0.34)

Table 6.18: Results for the basic feature set on small training set, using the edit-
tree as lemma class for Polish. Numbers in brackets indicate improvement over the
same configuration with reverse-edit-list

That is an EditTree is either a leaf node labeled Replace, which stores a tuple of
strings, or it is an internal node labeled Split which stores a tuple of natural numbers
and has an EditTree as the left child and an EditTree as the right child.

The function et builds this tree structure given two strings w and w′:

et(w,w′) =

{

Replace〈w,w′〉 if w and w′ have no LCS

Split〈(iw, jw), et(wprefix , w′
prefix), et(wsuffix , w′

suffix)〉 otherwise

(6.5)
where

(iw, jw, iw′ , jw′) = lcs(w,w′)

(wprefix , wstem , wsuffix) = split(w, iw, jw)

(w′
prefix , w′

stem , w′
suffix) = split(w′, iw′ , jw′)

(6.6)

EditTree encodes the operations to perform on an input string w in order to transform
it into the output string w′. The operations are applied recursively as follows:

apply(Replace〈v, v′〉, w) = v′

apply(Split〈(i, j), l, r〉, w) = apply(l, wprefix)⊕ wstem ⊕ apply(r, wsuffix)
(6.7)

where
(wprefix , wstem , wsuffix) = split(w, i, j)

and ⊕ is string concatenation.
Using edit-tree as the edit script (unlike reverse-edit-list) preserves analogies

like the one holding between the two Polish form-lemma pairs13:

naj ladniejszy : ladny :: najtrudniejszy : trudny

since

apply(et(naj ladniejszy, ladny), najtrudniejszy) = trudny

13prettiest, pretty and hardest, hard

101

The better generalization of edit-tree as compared to reverse-edit-list is sug-
gested by the smaller number of unique lemma classes discovered in the small training
set for Polish by the former compared to the latter method: 1110 vs. 1209.

Table 6.18 shows evaluation results for the small Polish training set when using
edit-tree for lemma class induction. There is a modest (relative error reduction of
2.24%) but statistically significant (p-value < 0.005) improvement for lemmatization
for all tokens. The small magnitude of the improvement is most probably due to
the relatively infrequent occurence of prefixal morphological phenomena in Polish. In
Spanish and Romanian they are even less frequent, and differences between edit-tree
and reverse-edit-list for them are very small and not statistically significant.

In order to test the edit-tree lemma class induction on more interesting and
more challenging data I decided to try to run Morfette data taken from the Celtic
languages Welsh and Irish. Celtic features word initial consonant mutations: i.e. the
first consonant of a word may change depending on the word’s grammatical context.
Those mutations can co-occur with the more common suffixal morphology.

The Welsh data comes form the Cronfa Electroneg o Gymraeg corpus (Ellis et al.,
2001). I used a training set of 70,000 tokens and a test set of 10,000 tokens. The Irish
data was provided by Elaine Uı́ Dhonnchadha. I used 10,000 tokens for the test set
and approximately 60,000 for training.

Table 6.19 shows the results for the edit-tree on this data together with im-
provements over the baseline using reverse-edit-list. The difference for Welsh is
somewhat more pronounced than for Polish (4.58% relative error reduction for lemma-
tization, all words, p-value < 0.005) but still rather modest. For Irish however there
are larger gains: 12.14% relative error reduction for lemmatization for all words, with
p-value of 3×1014

It seems that the more general edit script instantiation does permit us to find
better lemma classes, but the magnitude of the improvement varies depending on the
language. In the case of Irish the improvements are robust and the richer lemma class
representation is clearly beneficial. In other cases, such as Polish and also Welsh, in
spite of the very strong bias towards suffixation that reverse-edit-list encodes, it is
not trivial to substantially improve on the scores achieved with it.

6.4.7 Conclusion

Morfette has two important features. Firstly, it is modular in the sense that the
morphological-tagging and lemmatization models can use different features, can be
trained separately, and even use different classifiers. Secondly, in spite of such modu-
larity, the way the search algorithm combines MSD and lemma-class conditional prob-
abilities means that the outputs of the two models are integrated at decoding time and
their predictions are combined into an overall scoring over MSD-tag-lemma-class pair
sequences.

This data-driven approach can be adapted to scenarios with different types of re-
sources available: it can be trained on nothing more than a modest-sized corpus an-
notated with lemmas and morphological tags, or it can additionally make use of mor-
phological dictionaries if such are available. The dictionary information is exploited
by including it in the log-linear models as features. This means that the tag sets and
annotations in the training corpus and the lexicon resources do not have to be identical.

102

Unseen word ratio

Welsh 11.25
Irish 12.61

All words

MSD-tagging Lemmatization Joint

Welsh 87.72 (+0.18) 92.92 (+0.34) 84.86 (+0.35)
Irish 79.64 (+0.12) 94.21 (+0.80) 78.81 (+0.40)

Seen words

MSD-tagging Lemmatization Joint

Welsh 92.11 (+0.03) 96.12 (−0.16) 90.35 (−0.05)
Irish 85.43 (+0.06) 98.00 (+0.03) 85.07 (+0.05)

Unseen words

MSD-tagging Lemmatization Joint

Welsh 53.07 (+1.33) 67.64 (+4.27) 41.51 (+3.47)
Irish 39.49 (+0.56) 67.96 (+6.11) 35.45 (+2.85)

Table 6.19: Results for the basic feature set, using the edit-tree as lemma class for
Welsh and Irish. Numbers in brackets indicate improvement over the same configuration
with reverse-edit-list.

Morfette substantially improves on the scores on the Spanish test set obtained by
a popular and mature language analyzer Freeling: even in the resource-poor configura-
tion, using a small training set and no lexical resources. Similar comparisons with other
systems and on other languages would be desirable to strengthen the conclusion that
the Morfette approach is competitive with state-of-the-art morphological analyzers.

The novel lemma class induction method depends on the abstract notion of edit
script or a specification of how to convert an inflected word form to the corresponding
lemma. The current default edit script type used in the system, reverse-edit-list
assumes that inflectional morphology affects word endings and does not produce good
general lemma classes when this assumption is violated. Experiments with a less biased
alternative edit script type edit-tree showed improvement in lemmatization score;
however there is still scope for further investigation in lemma class induction.

6.5 Morphological Analysis and Synthesis: ILP and Classifier-

Based Approaches

In this section I compare two machine learning approaches to building models of mor-
phological analysis and synthesis: the Inductive Logic Programming (ILP) approach
used in (Manandhar et al., 1998) and the classifier-based approach used here.

The lemmatization method described in Sections 6.3 and 6.4 differs in several ways
from the ILP method using Clog and thus comparative performance is difficult to
assess.

In what follows I take two basic ideas from Section 6.3, namely

103

• treating lemmatization as a classification task,

• using a version of edit script to induce lemma classes.

However, I use an experimental setup similar to that described in (Manandhar et al.,
1998) and perform evaluation of both systems on the same data, which makes a mean-
ingful comparison possible.

More specifically, the classifier-based lemmatization method introduced in 6.3 works
on running text, that is the examples to classify are word tokens in context. The
classifier uses features extracted from the word forms and also from the surrounding
context, i.e. the preceding and following word forms. The output to learn to predict is
always the edit script which takes the word-form to the corresponding lemma.

In contrast, the training examples in the ILP method are isolated wordform-MSD-
lemma triples, i.e. the learner works with word-types, rather than word tokens. During
prediction, either the wordform or the lemma are output, depending on whether we
are performing synthesis or analysis. That is both the training and test examples come
from a lexicon rather than being from a corpus of sentences. However, it is easy to
adapt the classifier method to the setting analogous to that used in (Manandhar et al.,
1998). We need to remove all the context features since they are no longer available.
They are effectively replaced by the MSD-tag associated with the word type or lemma
to classify. In order to perform synthesis rather than analysis, we compute the edit
script from the lemma to word form rather than the other way round.

Those modifications to the classifier-based lemmatization method make it possible
to have a fair and informative comparison to the ILP approach to learning morphology.

6.5.1 Data

The data I use for this experiment are almost the same as those used in (Manandhar
et al., 1998), i.e. they come from the Multext-EAST corpus. However, I use the most
recent Version 3 of that resource. Also I do not experiment with Estonian data, since
the morphologically analyzed Appendix for this language is missing from the resource.
I use data from English, Romanian, Czech and Slovene.

The training data comes from parts 1 through 3 of the corpus, while the test set
comes from part 4, the Appendix. The training and testing data is generated as follows,
to mimic the setup used in (Manandhar et al., 1998):

For each token in the text, all its morphological analyses (lemma-MSD pairs) are
extracted from the accompanying lexicon. Then all analyses with MSDs for nouns and
adjectives are kept while other tokens are discarded. Finally duplicates are removed, so
that the training and testing data consists of morphologically analyzed word types, not
tokens. Duplicates are removed separately for training set and test set, which means
that there are some examples in the test set that also appear in the training set.

6.5.2 Model and features

Here, as in Section 6.4, I use the Maximum Entropy algorithm for classification.
In order to match the original ILP work, I trained two sets of models: one for

analysis, mapping wordform-MSD pairs to lemmas, and one for synthesis, mapping
lemma-MSD pairs to wordforms. The only difference is which of the two strings is

104

Feature notation Description

f Lowercased wordform
sn(f), n = 1 · · · 7 Suffixes of length n
pn(f), n = 1 · · · 3 Prefixes of length n
m MSD tag

Table 6.20: Features for lexical analysis model

Feature notation Description

l Lowercased lemma
sn(l), n = 1 · · · 7 Suffixes of length n
pn(l), n = 1 · · · 3 Prefixes of length n
m MSD tag

Table 6.21: Features for lexical synthesis model

given as input and which is produced as output – no other changes were made to
the overall method. Both model sets used edit-tree for class induction (with the
arguments swapped for the synthesis model).

As already mentioned, the features have to be adapted to the new setting: none of
the context word features can be used, while the MSD-tags provide an important new
feature. Tables 6.20 and 6.21 describe the features sets used: they are analogous for
both sets of models, identical for all the languages, and were chosen based on cross-
validation on the training set. The MaxEnt smoothing parameter σ2 = 10 was also
chosen in the same way.

For experiments with Clog14, the background predicate mate/6 was used, shown
in Table 6.3.

Following (Manandhar et al., 1998), a separate program was learned for each MSD
(I did not collapse any MSDs together). When an MSD in the test set is absent from
the training data, the system backs off to outputting the input string. The same backoff
was used in case of the predicate failing.

6.5.3 Results and error analysis

Tables 6.22 and 6.23 summarize the results for analysis and synthesis respectively, for
all input tuples. In most cases the differences between the two systems are relatively
small, with higher MaxEnt+edit-tree scores, giving relative error reductions between
2.67% and 18.16%. The only exception is Czech synthesis where Clog is better with
a relative error reduction of 9.51%.

Tables 6.24 and 6.26 show results for the subset of input tuples seen in the training
data, while tables 6.25 and 6.27 show unknown tuple ratio and results for unseen inputs.

14I would like to thank Tomaž Erjavec for providing me with Clog software for the purpose of this
research

105

split([X,Y|Z],[X],[Y|Z]).

split([X|Y],[X|Z],W) :- split(Y,Z,W).

mate(W1,W2,[],[],Y1,[]):-

split(W1,W2,Y1).

mate(W1,W2,[],[],[],Y2):-

split(W2,W1,Y2).

mate(W1,W2,[],[],Y1,Y2):-

split(W1,X,Y1),

split(W2,X,Y2).

mate(W1,W2,P1,P2,Y1,Y2):-

split(W1,P1,W11),

split(W2,P2,W22),

split(W11,X,Y1),

split(W22,X,Y2).

% total suppletion

mate(W1,W2,[],[],W1,W2).

Figure 6.3: Background predicate mate/6

Clog MaxEnt+et RER

English 98.93 99.04 10.28
Romanian 96.67 97.10 12.91
Czech 95.15 95.70 11.34
Slovene 97.34 97.66 12.03

Table 6.22: Morphological analysis results - all

Clog MaxEnt+et RER

English 99.25 99.36 14.67
Romanian 97.38 97.45 2.67
Czech 92.01 91.17 −9.51
Slovene 95.98 96.71 18.16

Table 6.23: Morphological synthesis results - all

Clog MaxEnt+et RER

English 99.71 99.71 0.00
Romanian 99.88 99.88 0.00
Czech 99.51 99.40 −18.33
Slovene 99.44 99.44 0.00

Table 6.24: Morphological analysis results - seen

106

Unseen ratio Clog MaxEnt+et RER

English 25.91 96.69 97.11 12.69
Romanian 40.65 91.99 93.03 12.98
Czech 42.95 89.37 90.77 13.17
Slovene 48.26 95.10 95.75 13.27

Table 6.25: Morphological analysis results - unseen

Clog MaxEnt+et RER

English 99.42 99.57 25.86
Romanian 99.76 99.64 −33.33
Czech 91.19 91.69 5.68
Slovene 98.54 98.74 13.70

Table 6.26: Morphological synthesis results - seen

Unseen ratio Clog MaxEnt+et RER

English 25.59 98.74 98.74 0.00
Romanian 40.51 93.88 94.23 5.72
Czech 39.49 93.28 90.37 −30.22
Slovene 47.74 93.17 94.49 19.33

Table 6.27: Morphological synthesis results - unseen

107

For both systems the performance on Czech data looked surprising bad, especially
for synthesis, so I inspected the training data more closely. It seems that the major
source of error are negated adjectives such as nebezpečný (dangerous). In the Czech
lexicon both nebezpečný and bezpečný (safe), are assigned the same lemma-MSD pair.
Thus in the case of synthesis, in principle each adjectival lemma-MSD pair has two
possible solutions, one non-negated and one negated form. In the case of analysis it
simply creates more cases where both the suffix and prefix have to be modified in the
input form, which seems more difficult to learn than the simpler cases of suffix modi-
fication. This treatment of negated adjectives is questionable since it makes synthesis
non-deterministic, and the analysis does not preserve all the information present in
the wordform. Arguably if the negative prefix is treated as an inflection, then there
should be a corresponding feature in the MSD recording its presence. It is not clear
how Manandhar et al. (1998) deal with this issue or if it even arises in their version of
the Multext-EAST data.

This interpretation of the poor performance on Czech data is confirmed by rerunning
the systems on data with negated adjectives removed. I removed from both training and
test data all examples where the wordform starts with ne whose lemma does not start
withne, except for the superlative adjectives which start with nej. On this modified
Czech data set Clog scores 97.03% and 96.63% on analysis and synthesis respectively,
while MaxEnt+et scores 97.28% and 96.16%

From these results it is evident that the classifier + edit script approach to morpho-
logical analysis is competitive with, and in most cases improves on the ILP method.
The advantages of ILP are its greater generality, as well as the fact that the learned
decision lists can be easily interpreted by humans.

On the other hand the classifier approach offers better performance and easier scal-
ability. Since the classification paradigm is the most common one in machine learning,
it comes with many well-understood, efficient and well-performing algorithms. If the
classifier used is a probabilistic one such as MaxEnt, there is the considerable addi-
tional advantage of being able to easily integrate it in larger probabilistic models, as in
Section 6.4.

6.6 Summary

In this chapter I have reviewed the most common existing approaches to data driven
morphological analysis and lemmatization, and I have proposed a novel perspective
on lemmatization as a classification task. I showed that lemmatization classes can be
induced automatically from annotated data using the idea of edit script which is a
representation of the transformation which maps an input string (e.g. wordform) to the
corresponding output string (e.g. the lemma).

I described successfully lemmatizing running text using reverse-edit-lists as
lemma classes and an SVM classifier for data from eight different languages. I then
proposed a method which performs morphological analysis and lemmatization in a joint
fashion, by learning two models, one for morphological tagging and one for lemmatiza-
tion, and by integrating their predictions in an integrated probabilistic model. I also
showed how to exploit information from morphological lexicons within this framework,
and how to improve lemma class induction by using a more general version of edit

108

script, the edit-tree.
Finally I contrasted the edit script- and classifier-based approach to learning mor-

phology with the Inductive Logic Programming method, and showed that the former
gives competitive or improved performance while being scalable, well understood, and
easy to use.

109

Chapter 7

Conclusion

The approach to treebank-based LFG parsing developed by Cahill et al. (2002, 2004)
has been shown to be highly competitive. Part of that success is due to its modular,
pipeline-like architecture which makes it easy to swap components, and experiment
with different combinations. In this way a system can be built which leverages state-
of-the-art models for the different subparts of the parsing system.

In this thesis I have described the work on the design, integration and evaluation
of two of the components for the DCU LFG parsing architecture. Even though this
work has been motivated and driven by this particular parsing approach, its usefulness
transcends this context. This is again the result of the modular and flexible nature of
the system: most of the submodules are general-purpose processing engines while the
LFG-specific part is localized in the annotation algorithm, and to some degree in the
NLD module. This means that my enhancements to LFG parsing can be easily reused
in other applications.

7.1 Summary of Main Contributions

The main achievements described in this thesis are the following:

Spanish treebank-based LFG parsing

• I have overhauled and substantially extended the range of phenomena treated in
the Spanish annotation algorithm. I also revised and extended the gold standard
which now includes 338 sentences with their corresponding f-structures. This
exercise served two purposes: first it helped to identify areas where the existing
LFG parsing architecture for English needed further work to make it less language
dependent and more portable. Second, it enabled the work on developing and
evaluating a function labeling model for Spanish.

Function labeling

• I have developed a function labeler for Spanish which substantially outperforms
the previously used method of using the c-structure parser to obtain function-
labeled trees. The use of this model in the LFG parsing pipeline also improves
the f-structure quality as compared to the baseline method.

110

• I have described a training regime for an SVM-based function labeling model
where trees output by a parser are used in combination with treebank trees in
order to achieve better similarity between training and test examples. This model
outperforms all previously described function labelers on the standard English
Penn II treebank test set.

Morphological analysis

• I have developed a method to cast lemmatization as a sequence labeling task. It
relies on the notion of edit script which encodes the transformations on the word
form which will convert it into the corresponding lemma. Edit scripts can be
automatically computed from a corpus of word-lemma pairs and used as lemma-
tization classes: thus class labels themselves are induced from data and need not
be manually predefined. A lemmatization model can be learned from a corpus
annotated only with lemmas, with no explicit part-of-speech information.

• I have built the Morfette system which performs morphological analysis by learn-
ing a morphological tagging model and a lemmatization model, and combines the
predictions of those two models to find a globally good sequence of MSD-lemma
pairs for a sentence.

• I have shown that integrating information from morphological dictionaries into
the Maximum Entropy models used by Morfette is straightforward and can
substantially reduce error, especially on words absent from training corpus data.

• I have developed an instantiation of the edit script, the Edit Tree, which im-
proves lemmatization class induction in the case where inflectional morphology
affects word beginnings in addition to word endings, and have shown that the
use of this edit script version results in statistically significant error reductions
on test data in Polish, Welsh and Irish.

• I compared the proposed morphology models against existing systems (Freeling
and Clog): in both cases my proposed models showed competitive or superior
performance

7.2 Directions for Future Research

Research extending and following from the work reported in this thesis falls into two
broad categories. Firstly, there are multiple interesting problems related to extending
and improving the specific models discussed. Secondly, more work is needed to better
integrate the proposed models into the overall LFG parsing architecture, and port,
train and tune them on data for other languages, both within the GramLab project
and beyond.

7.2.1 Grammatical functions

I have shown in Chapter 5 that using the simple local classifier approach to learning
a function labeling model gives good results. However, in reality labeling decisions at

111

different nodes of the parse tree are dependent on each other. As a simple example
consider the cross-linguistically wide-spread constraint which ensures that a given verb
cannot subcategorize for more than one argument with the same grammatical function,
i.e. a verb can only govern a single subject, or a single direct object etc. In the scenario
where a local classification decision is taken at each node this very strong constraint is
not enforced in any way. For instance for a verb each of its neighboring nodes may be
independently a good candidate for a subject label; however if one of them is labeled
as a subject, the others should not.

A simple resolution to this inadequacy would be to partition nodes in the parse
tree into sets which are governed by the same verb – for example for the Spanish
Cast3LB treebank it would be sufficient to group together all sisters of the same gv
(verb group) constituent – and label those groups jointly. The simplest such joint
labeling could use a sequence labeling approach, make labeling decision dependent on
previous labelings, and choose a label sequence which is globally optimal. More complex
structured prediction schemes could also be explored.

As currently used, the function labeler is a module which is independent of the over-
all LFG parsing system: the annotation algorithm uses its output, but the module itself
is unaware of the context in which it is used. This makes is easier to reuse in scenarios
other than LFG parsing, but to achieve best performance a tighter integration might be
helpful. Currently model parameters and algorithm parameters (hyperparameters) are
tuned to optimize the accuracy on the original treebank function labels: however some
of these labels are not used by the LFG annotation algorithm; also some distinctions
encoded in the labels are collapsed in the f-structures. Additionally some labels may
influence larger portions of the f-structure than others. Thus it might be beneficial to
optimize more directly the score on the f-structures rather than the raw treebank func-
tion labeling accuracy: to some degree this can be achieved by simply dropping LFG-
irrelevant labels and collapsing LFG-irrelevant distinctions from the training data, and
training as usual. For model selection, including feature selection and hyperparameter
tuning, it would also be relatively straightforward to optimize directly on f-structure
f-scores.

7.2.2 Morphology and Morfette

As stressed in Chapter 6, the morphology models investigated in this thesis are quite
generic. Although they are usable in realistic scenarios as they are, for best performance
some amount of work would need to be dedicated to model selection: the feature
sets and the parameter settings should be tuned to specific languages and specific
processing tasks. There are extensions to Maximum Entropy optimization algorithms
which incorporate feature selection in the training step (Berger et al., 1996): it would
be interesting to implement such a scheme for Morfette in order to automate model
selection to some degree and make the system better adapt to characteristics of the
training data.

The Morfette system as described in Section 6.4 learns two separate MaxEnt
models, one for MSD tagging and one for lemmatization. This has the virtue of sim-
plicity, and, as we have seen, gives good performance. However, it would be possible
to envision other more fine-grained decompositions of the overall morphological anal-
ysis model. As mentioned in Section 6.2.4, one approach to reducing data-sparseness

112

and computational load for languages with highly complex morphology is to predict
morphological features encoded in MSDs independently and then combine those pre-
dictions for the full MSD. It would be worthwhile to adopt such a scheme since it could
potentially offer improved scalability of the simple approach of learning each MSD in
one go.

Another decomposition of the MSD tagging task has been explored in (Tufiş, 1999;
Tufiş and Dragomirescu, 2004; Ceauşu, 2006). They propose to learn the target MSD
set in two steps: first learn a reduced tagset and then use the predictions of the model
trained on such a reduced set to learn a model which predicts the full tagset. It would be
straightforward and could be beneficial to implement a similar approach for Morfette.

The lemmatization model could also be easily factored into a number of smaller
models, one for each MSD tag: currently the MSD tag of the focus word is one of the
features in the lemmatization model. It is an important feature, which stands proxy
for the local context: its importance would be made more explicit by conditioning the
whole lemmatization model on the predicted MSD tag. One potential benefit would be
the possibility of more fine-grained model selection which could be done separately for
each MSD-conditioned model.

The research on data-driven morphological analysis reported in this thesis has con-
cerned itself almost exclusively with the supervised learning setting: the only unsu-
pervised aspect is the fact that lemma-classes are not present in the training data
but rather are automatically induced from it. However, there is a large body of re-
search on learning morphology from unannotated data: some of this research could
be adapted to leverage the huge amounts of unlabeled data which are nowadays avail-
able for many languages. Just as I have shown that using dictionaries improves the
analysis of lexical items not encountered in the training corpus, one would hope that
exploiting co-occurrence statistics in large bodies of unlabeled text would enable further
improvements. Some very preliminary experiments in this area have been encouraging.

7.2.3 Other aspects of LFG parsing

One module in the LFG parsing architecture which has not received much attention
in this thesis is the Non-Local Dependency (NLD) resolver. Currently its resolution-
ranking model relies on the product of two conditional probability scores: the proba-
bility of the subcategorization frame given lemma, and the probability of NLD path
given the source grammatical function (GF). It is likely that this simple model could
be improved on by using a classifier-based approach, where the resolution candidates
could have a rich feature representation, subsuming the lemma, subcat frame, source
GF and NLD path “features” used in the current model, and adding other features such
as target GF, attributes of the f-structure which is the value of source/target GFs, NLD
path length and other sources of information that could contribute to the ranking.

Finally, given the linguistically rich two-level syntactic representations given by the
DCU LFG parsing architecture, it would be worthwhile to explore how to leverage
them in a system which computes predicate-argument structures. A large body of
work exists on the task of semantic role labeling (SRL) especially using the PropBank
(Palmer et al., 2005) as the target representation and training resource.

The majority of this research has relied on using machine-learning approaches work-
ing with relatively shallow syntactic representations such as chunks or basic phrase-

113

structure trees (see e.g. the CoNLL Shared Tasks in (Carreras and Màrquez, 2004,
2005)). On the other hand, Miyao and Tsujii (2004) and Burke et al. (2005) attempt
to directly map deep syntactic representations (HPSG and LFG respectively) to Prop-
Bank roles.

Gildea and Hockenmaier (2003) combine the use of deep syntactic representations
(CCG) with machine-learning techniques: this is the approach which is most in the
spirit of the ideas behind this thesis. As such, it would be worthwhile trying to use
f-structures as input to a machine-learning-based SRL system, thus providing the LFG
parsing system with a semantic component.

114

Bibliography

Abeillé, A., Clément, L., and Toussenel, F. (2003). Building a treebank for French. In
Abeillé, A., editor, Treebanks: Building and Using Parsed Corpora, pages 165–188.
Kluwer Academic Publishers, Dordrecht, The Netherlands.

Afonso, S., Bick, E., Haber, R., and Santos, D. (2002). ”Floresta sintá(c)tica”: a
treebank for Portuguese. In LREC 2002: Proceedings of the Third International
Language Resources and Evaluation Conference, pages 1698–1703.

Aha, D., Kibler, D., and Albert, M. (1991). Instance-based learning algorithms. Ma-
chine Learning, 6(1):37–66.

Aho, A. V., Hirschberg, D. S., and Ullman, J. D. (1976). Bounds on the complexity of
the longest common subsequence problem. Journal of the ACM, 23(1):1–12.

Aizerman, M., Braverman, E., and Rozonoer, L. (1964). Theoretical foundations of the
potential function method in pattern recognition learning. Automation and Remote
Control, 25(6):821–837.

Al-Raheb, Y., Akrout, A., van Genabith, J., and Dichy, J. (2006). DCU250 Arabic
Dependency Bank: An LFG gold standard resource for the Arabic Penn Treebank.
In Proceedings of the Arabic NLP/MT Conference, pages 105–116.

Alsina, A. (1997). A theory of complex predicates: evidence from causatives in Bantu
and Romance. In Alsina, A., Bresnan, J., and Sells, P., editors, Complex Predicates,
pages 203–246. Center for the Study of Language and Information, Stanford, CA,
USA.

Andrews, A. (1990). Unification and morphological blocking. Natural Language &
Linguistic Theory, 8(4):507–557.

Andrews, A. D. and Manning, C. D. (1999). Complex Predicates and Information
Spreading in LFG. Center for the Study of Language and Information, Stanford,
CA, USA.

Baayen, R., Piepenbrock, R., and van Rijn, H. (1993). The CELEX lexical database
(CD-ROM). Technical report.

Berger, A. L., Pietra, V. J. D., and Pietra, S. A. D. (1996). A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39–71.

Bień, J. S. and Woliński, M. (2003). Wzbogacony korpus s lownika frekwencyjnego
polszczyzny wspó lczesnej. In Linde-Usiekniewicz, J., editor, Prace lingwistyczne
dedykowane prof. Jadwidze Sambor, pages 6–10. Wydzia l Polonistyki, Uniwersytet
Warszawski, Warsaw, Poland.

Bies, A., Ferguson, M., Katz, K., and MacIntyre, R. (1995). Bracketing guidelines for
Treebank II style Penn Treebank project. Technical report, University of Pennsylva-
nia.

115

Bikel, D. M. (2002). Design of a multi-lingual, parallel-processing statistical parsing
engine. In HLT 2002: Proceedings of the Second International Conference on Human
Language Technology Research, pages 178–182.

Blaheta, D. and Charniak, E. (2000). Assigning function tags to parsed text. In
NAACL 2000: Proceedings of the First Conference of the North American Chapter
of the Association for Computational Linguistics, pages 234–240.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for optimal
margin classifiers. In COLT ’92: Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, pages 144–152.

Brants, S., Dipper, S., Hansen, S., Lezius, W., and Smith, G. (2002). The TIGER
treebank. In TLT 2002: Proceedings of the Workshop on Treebanks and Linguistic
Theories, pages 24–41.

Brants, T. (2000). TnT: a statistical part-of-speech tagger. In Proceedings of the Sixth
Conference on Applied Natural Language Processing, pages 224–231.

Bresnan, J. (2001). Lexical-Functional Syntax. Blackwell Publishers, Oxford, UK.

Bresnan, J. and Kaplan, R. (1982). Lexical-functional grammar: A formal system for
grammatical representation. In The Mental Representation of Grammatical Rela-
tions, pages 173–281.

Briscoe, T. and Carroll, J. (2006). Evaluating the accuracy of an unlexicalized statistical
parser on the PARC DepBank. In Proceedings of the COLING/ACL 2006 Main
Conference Poster Sessions, pages 41–48.

Burke, M. (2006). Automatic Treebank Annotation for the Acquisition of LFG Re-
sources. PhD thesis, Dublin City University.

Burke, M., Cahill, A., O’Donovan, R., van Genabith, J., and Way, A. (2004a). Eval-
uation of an Automatic Annotation Algorithm against the PARC 700 Dependency
Bank. In LFG 2004: Proceedings of the Ninth International Conference on Lexical
Functional Grammar, pages 101–121.

Burke, M., Cahill, A., van Genabith, J., and Way, A. (2005). Evaluating automati-
cally acquired f-structures against PropBank. In LFG 2005: Proceedings of the 10th
International Lexical Functional Grammar Conference, pages 84–99.

Burke, M., Lam, O., Cahill, A., Chan, R., O’Donovan, R., Bodomo, A., van Genabith,
J., and Way, A. (2004b). Treebank-Based Acquisition of a Chinese Lexical-Functional
Grammar. In PACLIC 2004: Proceedings of the 18th Pacific Asia Conference on
Language, Information and Computation, pages 161–172.

Butt, M. (1997). Complex predicates in Urdu. In Alsina, A., Bresnan, J., and Sells,
P., editors, Complex Predicates. Center for the Study of Language and Information,
Stanford, CA, USA.

116

Butt, M., Dyvik, H., King, T. H., Masuichi, H., and Rohrer, C. (2002). The Parallel
Grammar project. In Proceedings of the Workshop on Grammar Engineering and
Evaluation (COLING02), pages 1–7.

Cahill, A., Burke, M., O’Donovan, R., Riezler, S., van Genabith, J., and Way, A. (2008).
Wide-Coverage Deep Statistical Parsing Using Automatic Dependency Structure An-
notation. Computational Linguistics, 34(1):81–124.

Cahill, A., Burke, M., O’Donovan, R., van Genabith, J., and Way, A. (2004). Long-
Distance Dependency Resolution in Automatically Acquired Wide-Coverage PCFG-
Based LFG Approximations. In ACL 2004: Proceedings of the 42nd Annual Meeting
of the Association for Computational Linguistics, pages 320–327.

Cahill, A., Forst, M., Burke, M., McCarthy, M., O’Donovan, R., Rohrer, C., van Gen-
abith, J., and Way, A. (2005). Treebank-Based Acquisition of Multilingual Unifi-
cation Grammar Resources. Journal of Research on Language and Computation;
Special Issue on ”Shared Representations in Multilingual Grammar Engineering”,
pages 247–279.

Cahill, A., McCarthy, M., van Genabith, J., and Way, A. (2002). Parsing with PCFGs
and Automatic F-Structure Annotation. In LFG 2002: Proceedings of the Seventh
International Conference on Lexical Functional Grammar, pages 76–95.

Campbell, R. (2004). Using linguistic principles to recover empty categories. In ACL
2004: Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics, pages 645–653.

Canisius, S., Van den Bosch, A., and Daelemans, W. (2006). Constraint satisfaction
inference: Non-probabilistic global inference for sequence labelling. In Proceedings of
the EACL 2006 Workshop on Learning Structured Information in Natural Language
Applications, pages 9–16.

Carreras, X., Chao, I., Padró, L., and Padró, M. (2004). Freeling: An open-source
suite of language analyzers. In LREC 2004: Proceedings of the 4th Conference on on
Language Resources and Evaluation, pages 239–242.

Carreras, X. and Màrquez, L. (2004). Introduction to the CoNLL-2004 Shared Task:
Semantic Role Labeling. In CoNLL-2004: Eighth Conference on Computational Nat-
ural Language Learning, pages 89–97.

Carreras, X. and Màrquez, L. (2005). Introduction to the CoNLL-2005 Shared Task:
Semantic Role Labeling. In CoNLL 2005: Ninth Conference on Computational Nat-
ural Language Learning, pages 152–164.

Carreras, X., Màrquez, L., Punyakanok, V., and Roth, D. (2002). Learning and in-
ference for clause identification. In EMCL 2002: Proceedings of the 13th European
Conference on Machine Learning, pages 35–47.

Ceauşu, A. (2006). Maximum entropy tiered tagging. In ESSLLI Student Session.

117

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for Support Vector Machines
(version 2.31).

Charniak, E. (2000). A maximum-entropy-inspired parser. In NAACL 2000: Proceed-
ings of the First Conference of the North American Chapter of the Association for
Computational Linguistics, pages 132–139.

Charniak, E. and Johnson, M. (2005). Course-to-fine n-best parsing and MaxEnt dis-
criminative reranking . In ACL 2005: Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics, pages 173–180.

Chen, S. and Rosenfeld, R. (1999). A Gaussian Prior for Smoothing Maximum Entropy
Models. Technical Report CMU-CS-99-108, Carnegie-Mellon University, School of
Computer Science.

Chrupa la, G. (2006). Simple data-driven context-sensitive lemmatization. Proce-
samiento del Lenguaje Natural, (37):121–127.

Chrupa la, G., Dinu, G., and van Genabith, J. (2008). Learning morphology with
Morfette. In LREC 2008: Proceedings of The Sixth International Conference on
Language Resources and Evaluation. To appear.

Chrupa la, G., Stroppa, N., van Genabith, J., and Dinu, G. (2007). Better training
for function labeling. In RANLP 2007: Proceedings of the Conference on Recent
Advances in Natural Language Processing, pages 133–138.

Chrupa la, G. and van Genabith, J. (2006a). Improving treebank-based automatic LFG
induction for Spanish. In LFG 2006: The 11th International Lexical Functional
Grammar Conference, pages 91–106.

Chrupa la, G. and van Genabith, J. (2006b). Using machine-learning to assign function
labels to parser output for Spanish. In Proceedings of the COLING/ACL 2006 Main
Conference Poster Sessions, pages 136–143.

Civit, M. (2000). Gúıa para la anotación morfosintáctica del corpus CLiC-TALP, X-
TRACT Working Paper. Technical report. Available at http://clic.fil.ub.es/

personal/civit/PUBLICA/guia_morfol.ps.

Civit, M. (2004). Gúıa para la anotación de las funciones sintácticas de Cast3LB.
Technical Report 3LB-WP 03-02. Available at http://clic.fil.ub.es/personal/
civit/PUBLICA/funcions.pdf.

Civit, M., Buf́ı, N., and Valverde, P. (2004). Building Cat3LB: a treebank for Catalan.
In Proceedings of the SALTMIL Workshop at LREC 2004, pages 48–51.

Civit, M. and Mart́ı, M. A. (2004). Building Cast3LB: A Spanish treebank. Research
on Language and Computation, 2(4):549–574.

Clark, S. and Curran, J. R. (2004). Parsing the WSJ Using CCG and Log-Linear
Models. In ACL 2004: Proceedings of the 42nd Annual Meeting of the Association
for Computational Linguistics.

118

Clark, S. and Hockenmaier, J. (2002). Evaluating a Wide-Coverage CCG Parser. In
Proceedings of the LREC 2002 Beyond Parseval Workshop, pages 60–66.

Collins, M. (1997). Three Generative, Lexicalized Models for Statistical Parsing. In
ACL 1997: Proceedings of the 35th Annual Meeting of the Association for Computa-
tional Linguistics, pages 16–23.

Collins, M. (1999). Head-Driven Statistical Models for Natural Language Parsing. PhD
thesis, University of Pennsylvania, Philadelphia, PA.

Collins, M. (2000). Discriminative Reranking for Natural Language Parsing. In ICML
2000: Proceedings of the 17th International Conference on Machine Learning, pages
175–182.

Collins, M. (2002). Discriminative training methods for hidden markov models: theory
and experiments with perceptron algorithms. In EMNLP 2002: Proceedings of the
ACL-02 Conference on Empirical Methods in Natural Language Processing, pages
1–8.

Collins, M. and Koo, T. (2005). Discriminative reranking for natural language parsing.
Computational Linguistics, 31(1):25–69.

Collins, M. and Roark, B. (2004). Incremental parsing with the perceptron algorithm.
In ACL 2004: Proceedings of the 42nd Annual Meeting on Association for Compu-
tational Linguistics, pages 111–119.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transac-
tions on Information Theory, 13(1):21–27.

Cowan, B. and Collins, M. (2005). Morphology and reranking for the statistical pars-
ing of spanish. In HLT-EMNLP 2005: Proceedings of Human Language Technology
Conference and Conference on Empirical Methods in Natural Language Processing,
pages 795–802.

Crammer, K. and Singer, Y. (2001). On the algorithmic implementation of multiclass
kernel-based vector machines. Journal of Machine Learning Research, 2(5):265–292.

Crammer, K. and Singer, Y. (2003). Ultraconservative online algorithms for multiclass
problems. Journal of Machine Learning Research, 3:951–991.

Crouch, R., Kaplan, R. M., King, T. H., and Riezler, S. (2002). A comparison of
evaluation metrics for a broad-coverage stochastic parser. In Proceedings of the LREC
2002 Beyond Parseval Workshop, pages 67–74.

Daelemans, W. and van den Bosch, A. (2005). Memory-Based Language Processing.
Cambridge University Press.

Daelemans, W., Zavrel, J., van der Sloot, K., and van den Bosch, A. (2004). TiMBL:
Tilburg Memory Based Learner, version 5.1, Reference Guide. Technical report.
Available from http://ilk.uvt.nl/downloads/pub/papers/ilk0402.pdf.

Dalrymple, M. (2001). Lexical functional grammar. Academic Press, San Diego, USA.

119

Daumé III, H. (2006). Practical Structured Learning Techniques for Natural Language
Processing. PhD thesis, University of Southern California, Los Angeles, CA.

Džeroski, S. and Erjavec, T. (1997). Induction of Slovene nominal paradigms. In ILP
1997: Proceedings of the 7th International Workshop on Inductive Logic Program-
ming, pages 141–148.

Ellis, N. C., O’Dochartaigh, C., Hicks, W., Morgan, M., and Laporte, N. (2001). Cronfa
Electroneg o Gymraeg (CEG): A 1 million word lexical database and frequency count
for Welsh. On-line. Available at: http://www.bangor.ac.uk/ar/cb/ceg.php.en.

Erjavec, T. (2002). The IJS-ELAN Slovene-English parallel corpus. International Jour-
nal of Corpus Linguistics, 7(1):1–20.

Erjavec, T. (2004). MULTEXT-East version 3: Multilingual morphosyntactic specifica-
tions, lexicons and corpora. In LREC 2004: Proceedings of the Fourth International
Conference on Language Resources and Evaluation, pages 1535–1538.

Erjavec, T. and Džeroski, S. (2004). Machine learning of morphosyntactic structure:
Lemmatizing unknown Slovene words. Applied Artificial Intelligence, 18(1):17–41.

Fix, E. and Hodges, J. (1951). Discriminatory analysis, nonparametric discrimination.
Technical report, USAF School of Aviation Medicine.

Freund, Y. and Schapire, R. E. (1998). Large margin classification using the percep-
tron algorithm. In COLT 1998: Proceedings of the Eleventh Annual Conference on
Computational Learning Theory, pages 209–217.

Gabbard, R., Kulick, S., and Marcus, M. (2006). Fully parsing the Penn Treebank. In
HLT-NAACL 2006: Proceedings of the Human Language Technology Conference of
the North American Chapter of the Association for Computational Linguistics, pages
184–191.

Gildea, D. and Hockenmaier, J. (2003). Identifying semantic roles using Combinatory
Categorial Grammar. In EMNLP 2003: Proceedings of the 2003 Conference on
Empirical Methods in Natural Language Processing, pages 57–64.

Guo, Y., Wang, H., and van Genabith, J. (2007). Recovering non-local dependencies
for Chinese. In EMNLP/CoNLL 2007: Proceedings of the 2007 Joint Meeting of the
Conference on Empirical Methods in Natural Language Processing and the Confer-
ence on Computational Natural Language Learning, pages 257–266.

Habash, N. and Rambow, O. (2005). Arabic tokenization, part-of-speech tagging and
morphological disambiguation in one fell swoop. ACL 2005: Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics, pages 573–580.

Hajič, J. (2000). Morphological tagging: data vs. dictionaries. In NAACL 2000: Pro-
ceedings of the First Conference of the North American Chapter of the Association
for Computational Linguistics, pages 94–101.

120

Hajič, J. and Hladká, B. (1998). Tagging inflective languages: prediction of morpho-
logical categories for a rich, structured tagset. In COLING-ACL 1998: Proceedings
of the 36th Annual Meeting of the Association for Computational Linguistics and the
17th International Conference on Computational Linguistics, pages 483–490.

Hakkani-Tür, D., Oflazer, K., and Tür, G. (2002). Statistical Morphological Disam-
biguation for Agglutinative Languages. Computers and the Humanities, 36(4):381–
410.

Han, C.-H. and Palmer, M. (2004). A morphological tagger for Korean: Statisti-
cal tagging combined with corpus-based morphological rule application. Machine
Translation, 18(4):275–297.

Henderson, J. (2003). Inducing history representations for broad coverage statistical
parsing. In NAACL 2003: Proceedings of the 2003 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics on Human Language
Technology, pages 24–31.

Hirschberg, D. S. (1977). Algorithms for the longest common subsequence problem.
Journal of the ACM, 24(4):664–675.

Jijkoun, V. and de Rijke, M. (2004). Enriching the output of a parser using memory-
based learning. In ACL 2004: Proceedings of the 42nd Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 311–318.

Johnson, M. (2001). A simple pattern-matching algorithm for recovering empty nodes
and their antecedents. In ACL 2002: Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 136–143.

Johnson, M., Geman, S., Canon, S., Chi, Z., and Riezler, S. (1999). Estimators for
stochastic ”Unification-Based” grammars. In ACL 1999: Proceedings of the 37th
Annual Conference of the Association for Computational Linguistics, pages 535–541.

Jurafsky, D. and Martin, J. H. (2008). Speech and Language Processing. Prentice Hall,
2 edition.

Kaplan, R., Riezler, S., King, T., Maxwell, J., Vasserman, A., and Crouch, R. (2004).
Speed and accuracy in shallow and deep stochastic parsing. In HLT-NAACL 2004:
Proceedings of the Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics.

Kurohashi, S. and Nagao, M. (2003). Building a Japanese parsed corpus while improv-
ing the parsing system. In Abeillé, A., editor, Treebanks: Building and Using Parsed
Corpora, pages 249–260. Kluwer Academic Publishers, Dordrecht.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional Random
Fields: Probabilistic models for segmenting and labeling sequence data. In ICML
2001: Proceedings of the Eighteenth International Conference on Machine Learning,
pages 282–289.

121

Lavrač, N. and Džeroski, S. (1994). Inductive logic programming. E. Horwood New
York.

Le, Z. (2004). Maximum Entropy Modeling Toolkit for Python and C++. Available at
http://homepages.inf.ed.ac.uk/s0450736/software/maxent/manual.pdf.

Levy, R. and Manning, C. (2003). Is it harder to parse Chinese, or the Chinese tree-
bank? In ACL 2003: Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics, pages 439–446.

Levy, R. and Manning, C. (2004). Deep dependencies from context-free statistical
parsers: correcting the surface dependency approximation. In ACL 2004: Proceedings
of the 42nd Annual Meeting on Association for Computational Linguistics, pages
328–335.

Ling, C. X. (1994). Learning the Past Tense of English Verbs: The Symbolic Pattern
Associator vs. Connectionist Models. Journal of Artificial Intelligence Research,
1:209–229.

Magerman, D. (1994). Natural Language Parsing as Statistical Pattern Recognition.
PhD thesis, Department of Computer Science, Stanford University, CA.

Manandhar, S., Džeroski, S., and Erjavec, T. (1998). Learning multilingual morphology
with CLOG. In Proceedings of the 8th International Conference on Inductive Logic
Programming, pages 135–144.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1994). Building a Large Anno-
tated Corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–
330.

Mart́ı, M. A., Taulé, M., Bertran, M., and Màrquez, L. (2007). AnCora: Multilingual
and multilevel annotated corpora. Unpublished draft available at http://clic.ub.
edu/ancora/ancora-corpus.pdf.

Maxwell, J. T. and Kaplan, R. M. (1996). Unification-based parsers that automati-
cally take advantage of context freeness. In LFG 1996: Proceedings of the Lexical
Functional Grammar Conference.

McCallum, A., Freitag, D., and Pereira, F. (2000). Maximum Entropy Markov models
for information extraction and segmentation. In ICML 2000: Proceedings of the
International Conference on Machine Learning, pages 591–598.

Merlo, P. and Musillo, G. (2005). Accurate function parsing. In HLT-EMNLP 2005:
Proceedings of the Conference on Human Language Technology and Empirical Meth-
ods in Natural Language Processing, pages 620–627.

Miyao, Y., Ninomiya, T., and Tsujii, J. (2003). Probabilistic modeling of argument
structures including non-local dependencies. In RANLP 2003: Proceedings of the
Conference on Recent Advances in Natural Language Processing, pages 285–291.

Miyao, Y. and Tsujii, J. (2002). Maximum Entropy Estimation for Feature Forests. In
HLT 2002: Proceedings of Human Language Technology Conference, pages 292–297.

122

Miyao, Y. and Tsujii, J. (2004). Deep linguistic analysis for the accurate identifica-
tion of predicate-argument relations. In COLING 2004: Proceedings of the 20th
International Conference on Computational Linguistics, pages 1392–1397.

Miyao, Y. and Tsujii, J. (2005). Probabilistic disambiguation models for wide-coverage
HPSG parsing. In ACL 2005: Proceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, pages 83–90.

Miyao, Y. and Tsujii, J. (2008). Feature forest models for probabilistic HPSG parsing.
Computational Linguistics, 34(1):35–80.

Mooney, R. J. and Califf, M. E. (1995). Induction of first-order decision lists: Results
on learning the past tense of English verbs. In Proceedings of the 5th International
Workshop on Inductive Logic Programming, pages 145–146.

Muggleton, S. (1991). Inductive logic programming. New Generation Computing,
8(4):295–318.

Musillo, G. and Merlo, P. (2005). Lexical and structural biases for function parsing.
In Proceedings of the Ninth International Workshop on Parsing Technology, pages
83–92.

Myers, E. W. (1986). An O(ND) difference algorithm and its variations. Algorithmica,
1(1):251–266.

Noreen, E. W. (1989). Computer intensive methods for testing hypotheses. A Wiley-
Interscience Publication, New York.

O’Donovan, R., Burke, M., Cahill, A., van Genabith, J., and Way, A. (2004). Large-
scale induction and evaluation of lexical resources from the Penn-II treebank. In ACL
2004: Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics, pages 367–374.

O’Donovan, R., Cahill, A., van Genabith, J., and Way, A. (2005). Automatic acquisition
of Spanish LFG resources from the CAST3LB treebank. In LFG 2005: Proceedings of
the Tenth International Conference on Lexical Functional Grammar, pages 334–352.

Oya, M. and van Genabith, J. (2007). Automatic acquisition of Lexical-Functional
Grammar resources from a Japanese dependency corpus. In PACLIC 2007: Proceed-
ings of the 21st Pacific Asia Conference on Language, Information and Computation.

Palmer, M., Gildea, D., and Kingsbury, P. (2005). The proposition bank: An annotated
corpus of semantic roles. Computational Linguistics, 31(1):71–106.

Ramshaw, L. and Marcus, M. (1995). Text chunking using transformation-based learn-
ing. In Proceedings of the Third ACL Workshop on Very Large Corpora, pages 82–94.
Cambridge MA, USA.

Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging. In
EMNLP 1996: Proceedings of the 1st Conference on Empirical Methods in Natural
Language Processing, pages 133–142.

123

Riezler, S., King, T. H., Kaplan, R. M., Crouch, R., John T. Maxwell, I., and Johnson,
M. (2001). Parsing the Wall Street Journal using a Lexical-Functional Grammar and
discriminative estimation techniques. In ACL 2002: Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, pages 271–278.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, (65):386–408. Reprinted in
Neurocomputing (MIT Press, 1998).

Rosenfeld, R. (1996). Maximum entropy approach to adaptive statistical language
modelling. Computer Speech & Language, 10(3):187–228.

Roth, D. (2001). Reasoning with classifiers. In ECML 2001: Proceedings of the Euro-
pean Conference on Machine Learning, pages 506–510.

Roth, D. and Yih, W. (2004). A linear programming formulation for global inference
in natural language tasks. In CONLL 2004: Eighth Conference on Computational
Natural Language Learning, pages 1–8.

Schluter, N. and van Genabith, J. (2007). Preparing, restructuring and augmenting
a French treebank: Lexicalised parsing or coherent treebanks? In PACLING 2007:
Proceedings of The 10th Conference of the Pacific Association of Computational Lin-
guistics, pages 200–209.

Sha, F. and Pereira, F. (2003). Shallow parsing with Conditional Random Fields. In
NAACL 2003: Proceedings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language Technology,
pages 134–141.

Shen, L., Sarkar, A., and Joshi, A. (2003). Using LTAG based features in parse rerank-
ing. In EMNLP 2003: Proceedings of the ACL-03 Conference on Empirical Methods
in Natural Language Processing, pages 89–96.

Stroppa, N. and Yvon, F. (2005). An analogical learner for morphological analysis. In
CoNNL 2005: Proceedings of the 9th Conference on Computational Natural Language
Learning, pages 120–127.

Taskar, B., Guestrin, C., and Koller, D. (2004). Max-margin Markov networks. In
Thrun, S., Saul, L., and Schölkopf, B., editors, Advances in Neural Information
Processing Systems. MIT Press.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large margin
methods for structured and interdependent output variables. Journal of Machine
Learning Research, 6:1453–1484.

Tufiş, D. (1999). Tiered tagging and combined language models classifiers. In TSD 1999:
Proceedings of the Second International Workshop on Text, Speech and Dialogue,
pages 28–33.

Tufiş, D. and Dragomirescu, L. (2004). Tiered tagging revisited. In LREC 2004: Pro-
ceedings of the Fourth International Language Resources and Evaluation Conference,
pages 39–42.

124

van den Bosch, A. (2004). Wrapped progressive sampling search for optimizing learn-
ing algorithm parameters. In Proceedings of the 16th Belgian-Dutch Conference on
Artificial Intelligence, pages 219–226.

van den Bosch, A. and Daelemans, W. (1999). Memory-based morphological analy-
sis. In ACL 1999: Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics, pages 285–292.

van der Beek, L., Bouma, G., Malouf, R., and van Noord, G. (2002). The Alpino
dependency treebank. In CLIN 2001: Computational Linguistics in the Netherlands,
pages 8–22.

Vapnik, V. (2006). Estimation of Dependences Based on Empirical Data. Springer.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer-Verlag, New
York, NY, USA.

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience, New York, NY,
USA.

Vossen, P., editor (1998). EuroWordNet: A Multilingual Database with Lexical Semantic
Networks. Springer.

Weston, J. and Watkins, C. (1999). Support vector machines for multiclass pattern
recognition. In Proceedings of the Seventh European Symposium On Artificial Neural
Networks.

White, A. and Liu, W. (1994). Bias in information-based measures in decision tree
induction. Machine Learning, 15(3):321–329.

Xia, F. (1999). Extracting Tree Adjoining Grammars from Bracketed Corpora. In
Proceedings of the 5th Natural Language Processing Pacific Rim Symposium, pages
398–403.

Xue, N. and Xia, F. (2000). The bracketing guidelines for the Penn Chinese treebank.
Technical report, University of Pennsylvania.

Yuret, D. and Türe, F. (2006). Learning morphological disambiguation rules for Turk-
ish. In HLT-NAACL 2006: Proceedings of the Human Language Technology Confer-
ence of the North American Chapter of the Association of Computational Linguistics,
pages 328–334.

Yvon, F. (2003). Finite-state machines solving analogies on words. Technical report,
ENST.

125

